Optimal. Leaf size=30 \[ \frac {5}{2 \left (4-e^{2 \left (x+2 \left (e^{1-x}+x\right )\right )^2}+x\right )} \]
________________________________________________________________________________________
Rubi [F] time = 4.21, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-5+e^{8 e^{2-2 x}+24 e^{1-x} x+18 x^2} \left (-80 e^{2-2 x}+e^{1-x} (120-120 x)+180 x\right )}{32+2 e^{16 e^{2-2 x}+48 e^{1-x} x+36 x^2}+e^{8 e^{2-2 x}+24 e^{1-x} x+18 x^2} (-16-4 x)+16 x+2 x^2} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-5+20 \exp \left (8 e^{2-2 x}+24 e^{1-x} x+2 x (-1+9 x)\right ) \left (-2 e+3 e^x\right ) \left (2 e+3 e^x x\right )}{2 \left (4-e^{2 e^{-2 x} \left (2 e+3 e^x x\right )^2}+x\right )^2} \, dx\\ &=\frac {1}{2} \int \frac {-5+20 \exp \left (8 e^{2-2 x}+24 e^{1-x} x+2 x (-1+9 x)\right ) \left (-2 e+3 e^x\right ) \left (2 e+3 e^x x\right )}{\left (4-e^{2 e^{-2 x} \left (2 e+3 e^x x\right )^2}+x\right )^2} \, dx\\ &=\frac {1}{2} \int \left (-\frac {5}{\left (-4+e^{2 e^{-2 x} \left (2 e+3 e^x x\right )^2}-x\right )^2}+\frac {120 e^{1+8 e^{2-2 x}-x+24 e^{1-x} x+18 x^2}}{\left (-4+e^{2 e^{-2 x} \left (2 e+3 e^x x\right )^2}-x\right )^2}-\frac {80 \exp \left (2+8 e^{2-2 x}+24 e^{1-x} x+2 x (-1+9 x)\right )}{\left (-4+e^{2 e^{-2 x} \left (2 e+3 e^x x\right )^2}-x\right )^2}+\frac {180 e^{2 e^{-2 x} \left (2 e+3 e^x x\right )^2} x}{\left (-4+e^{2 e^{-2 x} \left (2 e+3 e^x x\right )^2}-x\right )^2}-\frac {120 e^{1+8 e^{2-2 x}-x+24 e^{1-x} x+18 x^2} x}{\left (-4+e^{2 e^{-2 x} \left (2 e+3 e^x x\right )^2}-x\right )^2}\right ) \, dx\\ &=-\left (\frac {5}{2} \int \frac {1}{\left (-4+e^{2 e^{-2 x} \left (2 e+3 e^x x\right )^2}-x\right )^2} \, dx\right )-40 \int \frac {\exp \left (2+8 e^{2-2 x}+24 e^{1-x} x+2 x (-1+9 x)\right )}{\left (-4+e^{2 e^{-2 x} \left (2 e+3 e^x x\right )^2}-x\right )^2} \, dx+60 \int \frac {e^{1+8 e^{2-2 x}-x+24 e^{1-x} x+18 x^2}}{\left (-4+e^{2 e^{-2 x} \left (2 e+3 e^x x\right )^2}-x\right )^2} \, dx-60 \int \frac {e^{1+8 e^{2-2 x}-x+24 e^{1-x} x+18 x^2} x}{\left (-4+e^{2 e^{-2 x} \left (2 e+3 e^x x\right )^2}-x\right )^2} \, dx+90 \int \frac {e^{2 e^{-2 x} \left (2 e+3 e^x x\right )^2} x}{\left (-4+e^{2 e^{-2 x} \left (2 e+3 e^x x\right )^2}-x\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.40, size = 32, normalized size = 1.07 \begin {gather*} -\frac {5}{2 \left (-4+e^{2 e^{-2 x} \left (2 e+3 e^x x\right )^2}-x\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.73, size = 33, normalized size = 1.10 \begin {gather*} \frac {5}{2 \, {\left (x - e^{\left (18 \, x^{2} + 24 \, x e^{\left (-x + 1\right )} + 8 \, e^{\left (-2 \, x + 2\right )}\right )} + 4\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.11, size = 34, normalized size = 1.13
method | result | size |
risch | \(\frac {5}{2 \left (x -{\mathrm e}^{8 \,{\mathrm e}^{-2 x +2}+24 x \,{\mathrm e}^{1-x}+18 x^{2}}+4\right )}\) | \(34\) |
norman | \(\frac {5}{2 \left (x -{\mathrm e}^{8 \,{\mathrm e}^{-2 x +2}+24 x \,{\mathrm e}^{1-x}+18 x^{2}}+4\right )}\) | \(36\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.42, size = 33, normalized size = 1.10 \begin {gather*} \frac {5}{2 \, {\left (x - e^{\left (18 \, x^{2} + 24 \, x e^{\left (-x + 1\right )} + 8 \, e^{\left (-2 \, x + 2\right )}\right )} + 4\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.41, size = 36, normalized size = 1.20 \begin {gather*} \frac {5}{2\,\left (x-{\mathrm {e}}^{8\,{\mathrm {e}}^{-2\,x}\,{\mathrm {e}}^2}\,{\mathrm {e}}^{18\,x^2}\,{\mathrm {e}}^{24\,x\,{\mathrm {e}}^{-x}\,\mathrm {e}}+4\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.25, size = 32, normalized size = 1.07 \begin {gather*} - \frac {5}{- 2 x + 2 e^{18 x^{2} + 24 x e^{1 - x} + 8 e^{2 - 2 x}} - 8} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________