Optimal. Leaf size=28 \[ x \left (9+\frac {1}{x}+\log \left (\frac {1}{2} \left (3-\frac {e^{3+e^{e^3}}}{x}\right )\right )\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.23, antiderivative size = 27, normalized size of antiderivative = 0.96, number of steps used = 7, number of rules used = 5, integrand size = 68, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.074, Rules used = {6742, 43, 2448, 263, 31} \begin {gather*} 9 x+x \log \left (\frac {3}{2}-\frac {e^{3+e^{e^3}}}{2 x}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 31
Rule 43
Rule 263
Rule 2448
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {8 e^{3+e^{e^3}}-27 x}{e^{3+e^{e^3}}-3 x}+\log \left (\frac {3}{2}-\frac {e^{3+e^{e^3}}}{2 x}\right )\right ) \, dx\\ &=\int \frac {8 e^{3+e^{e^3}}-27 x}{e^{3+e^{e^3}}-3 x} \, dx+\int \log \left (\frac {3}{2}-\frac {e^{3+e^{e^3}}}{2 x}\right ) \, dx\\ &=x \log \left (\frac {3}{2}-\frac {e^{3+e^{e^3}}}{2 x}\right )-\frac {1}{2} e^{3+e^{e^3}} \int \frac {1}{\left (\frac {3}{2}-\frac {e^{3+e^{e^3}}}{2 x}\right ) x} \, dx+\int \left (9-\frac {e^{3+e^{e^3}}}{e^{3+e^{e^3}}-3 x}\right ) \, dx\\ &=9 x+x \log \left (\frac {3}{2}-\frac {e^{3+e^{e^3}}}{2 x}\right )+\frac {1}{3} e^{3+e^{e^3}} \log \left (e^{3+e^{e^3}}-3 x\right )-\frac {1}{2} e^{3+e^{e^3}} \int \frac {1}{-\frac {1}{2} e^{3+e^{e^3}}+\frac {3 x}{2}} \, dx\\ &=9 x+x \log \left (\frac {3}{2}-\frac {e^{3+e^{e^3}}}{2 x}\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [B] time = 0.14, size = 81, normalized size = 2.89 \begin {gather*} \frac {1}{3} \left (27 x-\left (e^{3+e^{e^3}}-3 x\right ) \log \left (\frac {3}{2}-\frac {e^{3+e^{e^3}}}{2 x}\right )+e^{3+e^{e^3}} \log \left (e^{3+e^{e^3}}-3 x\right )-e^{3+e^{e^3}} \log (x)\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.55, size = 24, normalized size = 0.86 \begin {gather*} x \log \left (\frac {3 \, x - e^{\left (e^{\left (e^{3}\right )} + 3\right )}}{2 \, x}\right ) + 9 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.31, size = 68, normalized size = 2.43 \begin {gather*} -\frac {{\left (e^{\left (2 \, e^{\left (e^{3}\right )} + 6\right )} \log \left (\frac {3 \, x - e^{\left (e^{\left (e^{3}\right )} + 3\right )}}{2 \, x}\right ) + 9 \, e^{\left (2 \, e^{\left (e^{3}\right )} + 6\right )}\right )} e^{\left (-e^{\left (e^{3}\right )} - 3\right )}}{\frac {3 \, x - e^{\left (e^{\left (e^{3}\right )} + 3\right )}}{x} - 3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.13, size = 25, normalized size = 0.89
method | result | size |
norman | \(x \ln \left (\frac {-{\mathrm e}^{{\mathrm e}^{{\mathrm e}^{3}}+3}+3 x}{2 x}\right )+9 x\) | \(25\) |
risch | \(x \ln \left (\frac {-{\mathrm e}^{{\mathrm e}^{{\mathrm e}^{3}}+3}+3 x}{2 x}\right )+9 x\) | \(25\) |
derivativedivides | \(2 \,{\mathrm e}^{{\mathrm e}^{{\mathrm e}^{3}}+3} \left (\frac {\ln \left (\frac {3}{2}-\frac {{\mathrm e}^{{\mathrm e}^{{\mathrm e}^{3}}+3}}{2 x}\right ) \left (\frac {3}{2}-\frac {{\mathrm e}^{{\mathrm e}^{{\mathrm e}^{3}}+3}}{2 x}\right ) {\mathrm e}^{-{\mathrm e}^{{\mathrm e}^{3}}-3} x}{3}+\frac {9 \,{\mathrm e}^{-{\mathrm e}^{{\mathrm e}^{3}}-3} x}{2}+\frac {\ln \left (\frac {3}{2}-\frac {{\mathrm e}^{{\mathrm e}^{{\mathrm e}^{3}}+3}}{2 x}\right )}{6}\right )\) | \(75\) |
default | \(2 \,{\mathrm e}^{{\mathrm e}^{{\mathrm e}^{3}}+3} \left (\frac {\ln \left (\frac {3}{2}-\frac {{\mathrm e}^{{\mathrm e}^{{\mathrm e}^{3}}+3}}{2 x}\right ) \left (\frac {3}{2}-\frac {{\mathrm e}^{{\mathrm e}^{{\mathrm e}^{3}}+3}}{2 x}\right ) {\mathrm e}^{-{\mathrm e}^{{\mathrm e}^{3}}-3} x}{3}+\frac {9 \,{\mathrm e}^{-{\mathrm e}^{{\mathrm e}^{3}}-3} x}{2}+\frac {\ln \left (\frac {3}{2}-\frac {{\mathrm e}^{{\mathrm e}^{{\mathrm e}^{3}}+3}}{2 x}\right )}{6}\right )\) | \(75\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.49, size = 61, normalized size = 2.18 \begin {gather*} -x {\left (\log \relax (2) - 9\right )} + \frac {1}{3} \, {\left (3 \, x + 8 \, e^{\left (e^{\left (e^{3}\right )} + 3\right )}\right )} \log \left (3 \, x - e^{\left (e^{\left (e^{3}\right )} + 3\right )}\right ) - \frac {8}{3} \, e^{\left (e^{\left (e^{3}\right )} + 3\right )} \log \left (3 \, x - e^{\left (e^{\left (e^{3}\right )} + 3\right )}\right ) - x \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.84, size = 22, normalized size = 0.79 \begin {gather*} x\,\left (\ln \left (\frac {3\,x-{\mathrm {e}}^{{\mathrm {e}}^{{\mathrm {e}}^3}}\,{\mathrm {e}}^3}{2\,x}\right )+9\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.18, size = 22, normalized size = 0.79 \begin {gather*} x \log {\left (\frac {\frac {3 x}{2} - \frac {e^{3 + e^{e^{3}}}}{2}}{x} \right )} + 9 x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________