Optimal. Leaf size=23 \[ \log \left (\log ^2\left (-5+4 x+\frac {3}{\log \left (\log \left (1+\frac {9}{x}+x\right )\right )}\right )\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.79, antiderivative size = 23, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, integrand size = 172, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.012, Rules used = {6688, 6684} \begin {gather*} 2 \log \left (\log \left (4 x+\frac {3}{\log \left (\log \left (x+\frac {9}{x}+1\right )\right )}-5\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6684
Rule 6688
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-6 \left (-9+x^2\right )+8 x \left (9+x+x^2\right ) \log \left (1+\frac {9}{x}+x\right ) \log ^2\left (\log \left (1+\frac {9}{x}+x\right )\right )}{x \left (9+x+x^2\right ) \log \left (1+\frac {9}{x}+x\right ) \log \left (\log \left (1+\frac {9}{x}+x\right )\right ) \left (3+(-5+4 x) \log \left (\log \left (1+\frac {9}{x}+x\right )\right )\right ) \log \left (-5+4 x+\frac {3}{\log \left (\log \left (1+\frac {9}{x}+x\right )\right )}\right )} \, dx\\ &=2 \log \left (\log \left (-5+4 x+\frac {3}{\log \left (\log \left (1+\frac {9}{x}+x\right )\right )}\right )\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.10, size = 23, normalized size = 1.00 \begin {gather*} 2 \log \left (\log \left (-5+4 x+\frac {3}{\log \left (\log \left (1+\frac {9}{x}+x\right )\right )}\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.68, size = 39, normalized size = 1.70 \begin {gather*} 2 \, \log \left (\log \left (\frac {{\left (4 \, x - 5\right )} \log \left (\log \left (\frac {x^{2} + x + 9}{x}\right )\right ) + 3}{\log \left (\log \left (\frac {x^{2} + x + 9}{x}\right )\right )}\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {2 \, {\left (4 \, {\left (x^{3} + x^{2} + 9 \, x\right )} \log \left (\frac {x^{2} + x + 9}{x}\right ) \log \left (\log \left (\frac {x^{2} + x + 9}{x}\right )\right )^{2} - 3 \, x^{2} + 27\right )}}{{\left ({\left (4 \, x^{4} - x^{3} + 31 \, x^{2} - 45 \, x\right )} \log \left (\frac {x^{2} + x + 9}{x}\right ) \log \left (\log \left (\frac {x^{2} + x + 9}{x}\right )\right )^{2} + 3 \, {\left (x^{3} + x^{2} + 9 \, x\right )} \log \left (\frac {x^{2} + x + 9}{x}\right ) \log \left (\log \left (\frac {x^{2} + x + 9}{x}\right )\right )\right )} \log \left (\frac {{\left (4 \, x - 5\right )} \log \left (\log \left (\frac {x^{2} + x + 9}{x}\right )\right ) + 3}{\log \left (\log \left (\frac {x^{2} + x + 9}{x}\right )\right )}\right )}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [F] time = 0.04, size = 0, normalized size = 0.00 \[\int \frac {\left (8 x^{3}+8 x^{2}+72 x \right ) \ln \left (\frac {x^{2}+x +9}{x}\right ) \ln \left (\ln \left (\frac {x^{2}+x +9}{x}\right )\right )^{2}-6 x^{2}+54}{\left (\left (4 x^{4}-x^{3}+31 x^{2}-45 x \right ) \ln \left (\frac {x^{2}+x +9}{x}\right ) \ln \left (\ln \left (\frac {x^{2}+x +9}{x}\right )\right )^{2}+\left (3 x^{3}+3 x^{2}+27 x \right ) \ln \left (\frac {x^{2}+x +9}{x}\right ) \ln \left (\ln \left (\frac {x^{2}+x +9}{x}\right )\right )\right ) \ln \left (\frac {\left (4 x -5\right ) \ln \left (\ln \left (\frac {x^{2}+x +9}{x}\right )\right )+3}{\ln \left (\ln \left (\frac {x^{2}+x +9}{x}\right )\right )}\right )}\, dx\]
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.48, size = 54, normalized size = 2.35 \begin {gather*} 2 \, \log \left (\log \left (4 \, x \log \left (\log \left (x^{2} + x + 9\right ) - \log \relax (x)\right ) - 5 \, \log \left (\log \left (x^{2} + x + 9\right ) - \log \relax (x)\right ) + 3\right ) - \log \left (\log \left (\log \left (x^{2} + x + 9\right ) - \log \relax (x)\right )\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 8.79, size = 39, normalized size = 1.70 \begin {gather*} 2\,\ln \left (\ln \left (\frac {\ln \left (\ln \left (\frac {x^2+x+9}{x}\right )\right )\,\left (4\,x-5\right )+3}{\ln \left (\ln \left (\frac {x^2+x+9}{x}\right )\right )}\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 15.35, size = 34, normalized size = 1.48 \begin {gather*} 2 \log {\left (\log {\left (\frac {\left (4 x - 5\right ) \log {\left (\log {\left (\frac {x^{2} + x + 9}{x} \right )} \right )} + 3}{\log {\left (\log {\left (\frac {x^{2} + x + 9}{x} \right )} \right )}} \right )} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________