Optimal. Leaf size=32 \[ 4 \left (4+x-\log \left (\frac {1}{15} \left (-5-2 e^{-x}+3 e^x-x\right ) x^2\right )\right ) \]
________________________________________________________________________________________
Rubi [F] time = 0.52, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {16-24 e^{2 x}-16 x+e^x \left (40-8 x-4 x^2\right )}{-2 x+3 e^{2 x} x+e^x \left (-5 x-x^2\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (-\frac {8}{x}-\frac {4 \left (4+4 e^x+e^x x\right )}{-2-5 e^x+3 e^{2 x}-e^x x}\right ) \, dx\\ &=-8 \log (x)-4 \int \frac {4+4 e^x+e^x x}{-2-5 e^x+3 e^{2 x}-e^x x} \, dx\\ &=-8 \log (x)-4 \int \left (\frac {4}{-2-5 e^x+3 e^{2 x}-e^x x}+\frac {4 e^x}{-2-5 e^x+3 e^{2 x}-e^x x}+\frac {e^x x}{-2-5 e^x+3 e^{2 x}-e^x x}\right ) \, dx\\ &=-8 \log (x)-4 \int \frac {e^x x}{-2-5 e^x+3 e^{2 x}-e^x x} \, dx-16 \int \frac {1}{-2-5 e^x+3 e^{2 x}-e^x x} \, dx-16 \int \frac {e^x}{-2-5 e^x+3 e^{2 x}-e^x x} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.20, size = 32, normalized size = 1.00 \begin {gather*} 4 \left (2 x-2 \log (x)-\log \left (2+5 e^x-3 e^{2 x}+e^x x\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.71, size = 26, normalized size = 0.81 \begin {gather*} 8 \, x - 4 \, \log \left (-{\left (x + 5\right )} e^{x} + 3 \, e^{\left (2 \, x\right )} - 2\right ) - 8 \, \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 1.00, size = 28, normalized size = 0.88 \begin {gather*} 8 \, x - 4 \, \log \left (-x e^{x} + 3 \, e^{\left (2 \, x\right )} - 5 \, e^{x} - 2\right ) - 8 \, \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.03, size = 26, normalized size = 0.81
method | result | size |
risch | \(-8 \ln \relax (x )+8 x -4 \ln \left ({\mathrm e}^{2 x}+\left (-\frac {x}{3}-\frac {5}{3}\right ) {\mathrm e}^{x}-\frac {2}{3}\right )\) | \(26\) |
norman | \(8 x -8 \ln \relax (x )-4 \ln \left ({\mathrm e}^{x} x -3 \,{\mathrm e}^{2 x}+5 \,{\mathrm e}^{x}+2\right )\) | \(28\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.39, size = 24, normalized size = 0.75 \begin {gather*} 8 \, x - 4 \, \log \left (-\frac {1}{3} \, {\left (x + 5\right )} e^{x} + e^{\left (2 \, x\right )} - \frac {2}{3}\right ) - 8 \, \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.10, size = 27, normalized size = 0.84 \begin {gather*} 8\,x-4\,\ln \left (5\,{\mathrm {e}}^x-3\,{\mathrm {e}}^{2\,x}+x\,{\mathrm {e}}^x+2\right )-8\,\ln \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.19, size = 31, normalized size = 0.97 \begin {gather*} 8 x - 8 \log {\relax (x )} - 4 \log {\left (\left (- \frac {x}{3} - \frac {5}{3}\right ) e^{x} + e^{2 x} - \frac {2}{3} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________