Optimal. Leaf size=23 \[ \log \left (\left (2+\frac {8}{x^2}-x\right ) \left (-e^{x^2}+x^3\right )\right ) \]
________________________________________________________________________________________
Rubi [F] time = 1.33, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {8 x^3+6 x^5-4 x^6+e^{x^2} \left (16-16 x^2+x^3-4 x^4+2 x^5\right )}{8 x^4+2 x^6-x^7+e^{x^2} \left (-8 x-2 x^3+x^4\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-8 x^3-6 x^5+4 x^6-e^{x^2} \left (16-16 x^2+x^3-4 x^4+2 x^5\right )}{x \left (e^{x^2}-x^3\right ) \left (8+2 x^2-x^3\right )} \, dx\\ &=\int \left (-\frac {x^2 \left (-3+2 x^2\right )}{-e^{x^2}+x^3}+\frac {16-16 x^2+x^3-4 x^4+2 x^5}{x \left (-8-2 x^2+x^3\right )}\right ) \, dx\\ &=-\int \frac {x^2 \left (-3+2 x^2\right )}{-e^{x^2}+x^3} \, dx+\int \frac {16-16 x^2+x^3-4 x^4+2 x^5}{x \left (-8-2 x^2+x^3\right )} \, dx\\ &=-\int \left (-\frac {3 x^2}{-e^{x^2}+x^3}+\frac {2 x^4}{-e^{x^2}+x^3}\right ) \, dx+\int \left (-\frac {2}{x}+2 x+\frac {x (-4+3 x)}{-8-2 x^2+x^3}\right ) \, dx\\ &=x^2-2 \log (x)-2 \int \frac {x^4}{-e^{x^2}+x^3} \, dx+3 \int \frac {x^2}{-e^{x^2}+x^3} \, dx+\int \frac {x (-4+3 x)}{-8-2 x^2+x^3} \, dx\\ &=x^2-2 \log (x)+\log \left (8+2 x^2-x^3\right )-2 \int \frac {x^4}{-e^{x^2}+x^3} \, dx+3 \int \frac {x^2}{-e^{x^2}+x^3} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.26, size = 30, normalized size = 1.30 \begin {gather*} -2 \log (x)+\log \left (e^{x^2}-x^3\right )+\log \left (8+2 x^2-x^3\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.64, size = 27, normalized size = 1.17 \begin {gather*} \log \left (x^{3} - 2 \, x^{2} - 8\right ) + \log \left (-x^{3} + e^{\left (x^{2}\right )}\right ) - 2 \, \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.13, size = 27, normalized size = 1.17 \begin {gather*} \log \left (x^{3} - 2 \, x^{2} - 8\right ) + \log \left (-x^{3} + e^{\left (x^{2}\right )}\right ) - 2 \, \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.07, size = 28, normalized size = 1.22
method | result | size |
norman | \(-2 \ln \relax (x )+\ln \left (x^{3}-{\mathrm e}^{x^{2}}\right )+\ln \left (x^{3}-2 x^{2}-8\right )\) | \(28\) |
risch | \(-2 \ln \relax (x )+\ln \left (x^{3}-2 x^{2}-8\right )+\ln \left (-x^{3}+{\mathrm e}^{x^{2}}\right )\) | \(28\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.46, size = 27, normalized size = 1.17 \begin {gather*} \log \left (x^{3} - 2 \, x^{2} - 8\right ) + \log \left (-x^{3} + e^{\left (x^{2}\right )}\right ) - 2 \, \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.26, size = 27, normalized size = 1.17 \begin {gather*} \ln \left (x^3-{\mathrm {e}}^{x^2}\right )+\ln \left (x^3-2\,x^2-8\right )-2\,\ln \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.20, size = 26, normalized size = 1.13 \begin {gather*} - 2 \log {\relax (x )} + \log {\left (- x^{3} + e^{x^{2}} \right )} + \log {\left (x^{3} - 2 x^{2} - 8 \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________