Optimal. Leaf size=29 \[ 3-5 e^{-x}-\frac {5}{x}+\frac {1}{2} x \left (e^5+x\right )+\log (-1+\log (x)) \]
________________________________________________________________________________________
Rubi [A] time = 1.30, antiderivative size = 35, normalized size of antiderivative = 1.21, number of steps used = 11, number of rules used = 7, integrand size = 77, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.091, Rules used = {6741, 12, 6742, 2194, 14, 2302, 29} \begin {gather*} \frac {x^2}{2}+\frac {e^5 x}{2}-5 e^{-x}-\frac {5}{x}+\log (1-\log (x)) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 14
Rule 29
Rule 2194
Rule 2302
Rule 6741
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{-x} \left (10 x^2-e^x \left (-10+2 x-e^5 x^2-2 x^3\right )-\left (10 x^2+e^x \left (10+e^5 x^2+2 x^3\right )\right ) \log (x)\right )}{2 x^2 (1-\log (x))} \, dx\\ &=\frac {1}{2} \int \frac {e^{-x} \left (10 x^2-e^x \left (-10+2 x-e^5 x^2-2 x^3\right )-\left (10 x^2+e^x \left (10+e^5 x^2+2 x^3\right )\right ) \log (x)\right )}{x^2 (1-\log (x))} \, dx\\ &=\frac {1}{2} \int \left (10 e^{-x}+\frac {-10+2 x-e^5 x^2-2 x^3+10 \log (x)+e^5 x^2 \log (x)+2 x^3 \log (x)}{x^2 (-1+\log (x))}\right ) \, dx\\ &=\frac {1}{2} \int \frac {-10+2 x-e^5 x^2-2 x^3+10 \log (x)+e^5 x^2 \log (x)+2 x^3 \log (x)}{x^2 (-1+\log (x))} \, dx+5 \int e^{-x} \, dx\\ &=-5 e^{-x}+\frac {1}{2} \int \left (\frac {10+e^5 x^2+2 x^3}{x^2}+\frac {2}{x (-1+\log (x))}\right ) \, dx\\ &=-5 e^{-x}+\frac {1}{2} \int \frac {10+e^5 x^2+2 x^3}{x^2} \, dx+\int \frac {1}{x (-1+\log (x))} \, dx\\ &=-5 e^{-x}+\frac {1}{2} \int \left (e^5+\frac {10}{x^2}+2 x\right ) \, dx+\operatorname {Subst}\left (\int \frac {1}{x} \, dx,x,-1+\log (x)\right )\\ &=-5 e^{-x}-\frac {5}{x}+\frac {e^5 x}{2}+\frac {x^2}{2}+\log (1-\log (x))\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.53, size = 34, normalized size = 1.17 \begin {gather*} \frac {1}{2} \left (-10 e^{-x}-\frac {10}{x}+e^5 x+x^2+2 \log (1-\log (x))\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.56, size = 37, normalized size = 1.28 \begin {gather*} \frac {{\left (2 \, x e^{x} \log \left (\log \relax (x) - 1\right ) + {\left (x^{3} + x^{2} e^{5} - 10\right )} e^{x} - 10 \, x\right )} e^{\left (-x\right )}}{2 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.16, size = 31, normalized size = 1.07 \begin {gather*} \frac {x^{3} + x^{2} e^{5} - 10 \, x e^{\left (-x\right )} + 2 \, x \log \left (\log \relax (x) - 1\right ) - 10}{2 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.08, size = 29, normalized size = 1.00
method | result | size |
default | \(\frac {-10+x^{3}+x^{2} {\mathrm e}^{5}}{2 x}+\ln \left (\ln \relax (x )-1\right )-5 \,{\mathrm e}^{-x}\) | \(29\) |
risch | \(\frac {\left (x^{2} {\mathrm e}^{5+x}+{\mathrm e}^{x} x^{3}-10 x -10 \,{\mathrm e}^{x}\right ) {\mathrm e}^{-x}}{2 x}+\ln \left (\ln \relax (x )-1\right )\) | \(38\) |
norman | \(\frac {\left (-5 x +\frac {{\mathrm e}^{x} x^{3}}{2}+\frac {x^{2} {\mathrm e}^{5} {\mathrm e}^{x}}{2}-5 \,{\mathrm e}^{x}\right ) {\mathrm e}^{-x}}{x}+\ln \left (\ln \relax (x )-1\right )\) | \(39\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.40, size = 33, normalized size = 1.14 \begin {gather*} \frac {{\left ({\left (x^{3} + x^{2} e^{5} - 10\right )} e^{x} - 10 \, x\right )} e^{\left (-x\right )}}{2 \, x} + \log \left (\log \relax (x) - 1\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.18, size = 27, normalized size = 0.93 \begin {gather*} \ln \left (\ln \relax (x)-1\right )-5\,{\mathrm {e}}^{-x}+\frac {x\,{\mathrm {e}}^5}{2}-\frac {5}{x}+\frac {x^2}{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.36, size = 26, normalized size = 0.90 \begin {gather*} \frac {x^{2}}{2} + \frac {x e^{5}}{2} + \log {\left (\log {\relax (x )} - 1 \right )} - 5 e^{- x} - \frac {5}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________