Optimal. Leaf size=36 \[ -3+\frac {1}{2} \left (\frac {2}{x}-\frac {2}{3+\frac {3}{4 \log ^2\left (\log \left (\left (5+e^x-x\right ) x\right )\right )}}\right ) \]
________________________________________________________________________________________
Rubi [F] time = 5.72, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\left (-15-3 e^x+3 x\right ) \log \left (5 x+e^x x-x^2\right )+\left (-40 x+16 x^2+e^x \left (-8 x-8 x^2\right )\right ) \log \left (\log \left (5 x+e^x x-x^2\right )\right )+\left (-120-24 e^x+24 x\right ) \log \left (5 x+e^x x-x^2\right ) \log ^2\left (\log \left (5 x+e^x x-x^2\right )\right )+\left (-240-48 e^x+48 x\right ) \log \left (5 x+e^x x-x^2\right ) \log ^4\left (\log \left (5 x+e^x x-x^2\right )\right )}{\left (15 x^2+3 e^x x^2-3 x^3\right ) \log \left (5 x+e^x x-x^2\right )+\left (120 x^2+24 e^x x^2-24 x^3\right ) \log \left (5 x+e^x x-x^2\right ) \log ^2\left (\log \left (5 x+e^x x-x^2\right )\right )+\left (240 x^2+48 e^x x^2-48 x^3\right ) \log \left (5 x+e^x x-x^2\right ) \log ^4\left (\log \left (5 x+e^x x-x^2\right )\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-8 x \left (5-2 x+e^x (1+x)\right ) \log \left (\log \left (-x \left (-5-e^x+x\right )\right )\right )-3 \left (5+e^x-x\right ) \log \left (-x \left (-5-e^x+x\right )\right ) \left (1+4 \log ^2\left (\log \left (-x \left (-5-e^x+x\right )\right )\right )\right )^2}{3 \left (5+e^x-x\right ) \log \left (5 x+e^x x-x^2\right ) \left (x+4 x \log ^2\left (\log \left (-x \left (-5-e^x+x\right )\right )\right )\right )^2} \, dx\\ &=\frac {1}{3} \int \frac {-8 x \left (5-2 x+e^x (1+x)\right ) \log \left (\log \left (-x \left (-5-e^x+x\right )\right )\right )-3 \left (5+e^x-x\right ) \log \left (-x \left (-5-e^x+x\right )\right ) \left (1+4 \log ^2\left (\log \left (-x \left (-5-e^x+x\right )\right )\right )\right )^2}{\left (5+e^x-x\right ) \log \left (5 x+e^x x-x^2\right ) \left (x+4 x \log ^2\left (\log \left (-x \left (-5-e^x+x\right )\right )\right )\right )^2} \, dx\\ &=\frac {1}{3} \int \left (\frac {-3 \log \left (-x \left (-5-e^x+x\right )\right )-8 x \log \left (\log \left (-x \left (-5-e^x+x\right )\right )\right )-8 x^2 \log \left (\log \left (-x \left (-5-e^x+x\right )\right )\right )-24 \log \left (-x \left (-5-e^x+x\right )\right ) \log ^2\left (\log \left (-x \left (-5-e^x+x\right )\right )\right )-48 \log \left (-x \left (-5-e^x+x\right )\right ) \log ^4\left (\log \left (-x \left (-5-e^x+x\right )\right )\right )}{x^2 \log \left (5 x+e^x x-x^2\right ) \left (1+4 \log ^2\left (\log \left (-x \left (-5-e^x+x\right )\right )\right )\right )^2}+\frac {8 (6-x) \log \left (\log \left (5 x+e^x x-x^2\right )\right )}{\left (5+e^x-x\right ) \log \left (5 x+e^x x-x^2\right ) \left (1+4 \log ^2\left (\log \left (-x \left (-5-e^x+x\right )\right )\right )\right )^2}\right ) \, dx\\ &=\frac {1}{3} \int \frac {-3 \log \left (-x \left (-5-e^x+x\right )\right )-8 x \log \left (\log \left (-x \left (-5-e^x+x\right )\right )\right )-8 x^2 \log \left (\log \left (-x \left (-5-e^x+x\right )\right )\right )-24 \log \left (-x \left (-5-e^x+x\right )\right ) \log ^2\left (\log \left (-x \left (-5-e^x+x\right )\right )\right )-48 \log \left (-x \left (-5-e^x+x\right )\right ) \log ^4\left (\log \left (-x \left (-5-e^x+x\right )\right )\right )}{x^2 \log \left (5 x+e^x x-x^2\right ) \left (1+4 \log ^2\left (\log \left (-x \left (-5-e^x+x\right )\right )\right )\right )^2} \, dx+\frac {8}{3} \int \frac {(6-x) \log \left (\log \left (5 x+e^x x-x^2\right )\right )}{\left (5+e^x-x\right ) \log \left (5 x+e^x x-x^2\right ) \left (1+4 \log ^2\left (\log \left (-x \left (-5-e^x+x\right )\right )\right )\right )^2} \, dx\\ &=\frac {1}{3} \int \frac {-8 x (1+x) \log \left (\log \left (-x \left (-5-e^x+x\right )\right )\right )-3 \log \left (-x \left (-5-e^x+x\right )\right ) \left (1+4 \log ^2\left (\log \left (-x \left (-5-e^x+x\right )\right )\right )\right )^2}{\log \left (5 x+e^x x-x^2\right ) \left (x+4 x \log ^2\left (\log \left (-x \left (-5-e^x+x\right )\right )\right )\right )^2} \, dx+\frac {8}{3} \int \left (\frac {6 \log \left (\log \left (5 x+e^x x-x^2\right )\right )}{\left (5+e^x-x\right ) \log \left (5 x+e^x x-x^2\right ) \left (1+4 \log ^2\left (\log \left (-x \left (-5-e^x+x\right )\right )\right )\right )^2}+\frac {x \log \left (\log \left (5 x+e^x x-x^2\right )\right )}{\left (-5-e^x+x\right ) \log \left (5 x+e^x x-x^2\right ) \left (1+4 \log ^2\left (\log \left (-x \left (-5-e^x+x\right )\right )\right )\right )^2}\right ) \, dx\\ &=\frac {1}{3} \int \left (-\frac {3}{x^2}+\frac {8 (-1-x) \log \left (\log \left (5 x+e^x x-x^2\right )\right )}{x \log \left (5 x+e^x x-x^2\right ) \left (1+4 \log ^2\left (\log \left (-x \left (-5-e^x+x\right )\right )\right )\right )^2}\right ) \, dx+\frac {8}{3} \int \frac {x \log \left (\log \left (5 x+e^x x-x^2\right )\right )}{\left (-5-e^x+x\right ) \log \left (5 x+e^x x-x^2\right ) \left (1+4 \log ^2\left (\log \left (-x \left (-5-e^x+x\right )\right )\right )\right )^2} \, dx+16 \int \frac {\log \left (\log \left (5 x+e^x x-x^2\right )\right )}{\left (5+e^x-x\right ) \log \left (5 x+e^x x-x^2\right ) \left (1+4 \log ^2\left (\log \left (-x \left (-5-e^x+x\right )\right )\right )\right )^2} \, dx\\ &=\frac {1}{x}+\frac {8}{3} \int \frac {(-1-x) \log \left (\log \left (5 x+e^x x-x^2\right )\right )}{x \log \left (5 x+e^x x-x^2\right ) \left (1+4 \log ^2\left (\log \left (-x \left (-5-e^x+x\right )\right )\right )\right )^2} \, dx+\frac {8}{3} \int \frac {x \log \left (\log \left (5 x+e^x x-x^2\right )\right )}{\left (-5-e^x+x\right ) \log \left (5 x+e^x x-x^2\right ) \left (1+4 \log ^2\left (\log \left (-x \left (-5-e^x+x\right )\right )\right )\right )^2} \, dx+16 \int \frac {\log \left (\log \left (5 x+e^x x-x^2\right )\right )}{\left (5+e^x-x\right ) \log \left (5 x+e^x x-x^2\right ) \left (1+4 \log ^2\left (\log \left (-x \left (-5-e^x+x\right )\right )\right )\right )^2} \, dx\\ &=\frac {1}{x}+\frac {8}{3} \int \frac {x \log \left (\log \left (5 x+e^x x-x^2\right )\right )}{\left (-5-e^x+x\right ) \log \left (5 x+e^x x-x^2\right ) \left (1+4 \log ^2\left (\log \left (-x \left (-5-e^x+x\right )\right )\right )\right )^2} \, dx+\frac {8}{3} \int \left (-\frac {\log \left (\log \left (5 x+e^x x-x^2\right )\right )}{\log \left (5 x+e^x x-x^2\right ) \left (1+4 \log ^2\left (\log \left (-x \left (-5-e^x+x\right )\right )\right )\right )^2}-\frac {\log \left (\log \left (5 x+e^x x-x^2\right )\right )}{x \log \left (5 x+e^x x-x^2\right ) \left (1+4 \log ^2\left (\log \left (-x \left (-5-e^x+x\right )\right )\right )\right )^2}\right ) \, dx+16 \int \frac {\log \left (\log \left (5 x+e^x x-x^2\right )\right )}{\left (5+e^x-x\right ) \log \left (5 x+e^x x-x^2\right ) \left (1+4 \log ^2\left (\log \left (-x \left (-5-e^x+x\right )\right )\right )\right )^2} \, dx\\ &=\frac {1}{x}-\frac {8}{3} \int \frac {\log \left (\log \left (5 x+e^x x-x^2\right )\right )}{\log \left (5 x+e^x x-x^2\right ) \left (1+4 \log ^2\left (\log \left (-x \left (-5-e^x+x\right )\right )\right )\right )^2} \, dx-\frac {8}{3} \int \frac {\log \left (\log \left (5 x+e^x x-x^2\right )\right )}{x \log \left (5 x+e^x x-x^2\right ) \left (1+4 \log ^2\left (\log \left (-x \left (-5-e^x+x\right )\right )\right )\right )^2} \, dx+\frac {8}{3} \int \frac {x \log \left (\log \left (5 x+e^x x-x^2\right )\right )}{\left (-5-e^x+x\right ) \log \left (5 x+e^x x-x^2\right ) \left (1+4 \log ^2\left (\log \left (-x \left (-5-e^x+x\right )\right )\right )\right )^2} \, dx+16 \int \frac {\log \left (\log \left (5 x+e^x x-x^2\right )\right )}{\left (5+e^x-x\right ) \log \left (5 x+e^x x-x^2\right ) \left (1+4 \log ^2\left (\log \left (-x \left (-5-e^x+x\right )\right )\right )\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.12, size = 46, normalized size = 1.28 \begin {gather*} \frac {3+x+12 \log ^2\left (\log \left (-x \left (-5-e^x+x\right )\right )\right )}{3 \left (x+4 x \log ^2\left (\log \left (-x \left (-5-e^x+x\right )\right )\right )\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.68, size = 48, normalized size = 1.33 \begin {gather*} \frac {12 \, \log \left (\log \left (-x^{2} + x e^{x} + 5 \, x\right )\right )^{2} + x + 3}{3 \, {\left (4 \, x \log \left (\log \left (-x^{2} + x e^{x} + 5 \, x\right )\right )^{2} + x\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.21, size = 125, normalized size = 3.47
method | result | size |
risch | \(\frac {1}{x}+\frac {1}{12 \ln \left (i \pi +\ln \relax (x )+\ln \left (-{\mathrm e}^{x}+x -5\right )+\frac {i \pi \,\mathrm {csgn}\left (i x \left ({\mathrm e}^{x}+5-x \right )\right ) \left (\mathrm {csgn}\left (i x \left ({\mathrm e}^{x}+5-x \right )\right )+\mathrm {csgn}\left (i x \right )\right ) \left (\mathrm {csgn}\left (i x \left ({\mathrm e}^{x}+5-x \right )\right )-\mathrm {csgn}\left (i \left ({\mathrm e}^{x}+5-x \right )\right )\right )}{2}+i \pi \mathrm {csgn}\left (i x \left ({\mathrm e}^{x}+5-x \right )\right )^{2} \left (-\mathrm {csgn}\left (i x \left ({\mathrm e}^{x}+5-x \right )\right )-1\right )\right )^{2}+3}\) | \(125\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.63, size = 42, normalized size = 1.17 \begin {gather*} \frac {12 \, \log \left (\log \relax (x) + \log \left (-x + e^{x} + 5\right )\right )^{2} + x + 3}{3 \, {\left (4 \, x \log \left (\log \relax (x) + \log \left (-x + e^{x} + 5\right )\right )^{2} + x\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.51, size = 27, normalized size = 0.75 \begin {gather*} \frac {1}{3\,\left (4\,{\ln \left (\ln \left (5\,x+x\,{\mathrm {e}}^x-x^2\right )\right )}^2+1\right )}+\frac {1}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 2.87, size = 24, normalized size = 0.67 \begin {gather*} \frac {1}{12 \log {\left (\log {\left (- x^{2} + x e^{x} + 5 x \right )} \right )}^{2} + 3} + \frac {1}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________