Optimal. Leaf size=31 \[ 4-e+\frac {e^{\frac {2}{-4-2 x+\frac {3+x}{3}+\log (x)}}}{2+x} \]
________________________________________________________________________________________
Rubi [F] time = 3.70, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{\frac {6}{-9-5 x+3 \log (x)}} \left (-36-39 x-60 x^2-25 x^3+\left (54 x+30 x^2\right ) \log (x)-9 x \log ^2(x)\right )}{324 x+684 x^2+541 x^3+190 x^4+25 x^5+\left (-216 x-336 x^2-174 x^3-30 x^4\right ) \log (x)+\left (36 x+36 x^2+9 x^3\right ) \log ^2(x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{-\frac {6}{9+5 x-3 \log (x)}} \left (-36-39 x-60 x^2-25 x^3+6 x (9+5 x) \log (x)-9 x \log ^2(x)\right )}{x (2+x)^2 (9+5 x-3 \log (x))^2} \, dx\\ &=\int \left (-\frac {e^{-\frac {6}{9+5 x-3 \log (x)}}}{(2+x)^2}+\frac {6 e^{-\frac {6}{9+5 x-3 \log (x)}} (-3+5 x)}{x (2+x) (9+5 x-3 \log (x))^2}\right ) \, dx\\ &=6 \int \frac {e^{-\frac {6}{9+5 x-3 \log (x)}} (-3+5 x)}{x (2+x) (9+5 x-3 \log (x))^2} \, dx-\int \frac {e^{-\frac {6}{9+5 x-3 \log (x)}}}{(2+x)^2} \, dx\\ &=6 \int \left (-\frac {3 e^{-\frac {6}{9+5 x-3 \log (x)}}}{2 x (9+5 x-3 \log (x))^2}+\frac {13 e^{-\frac {6}{9+5 x-3 \log (x)}}}{2 (2+x) (9+5 x-3 \log (x))^2}\right ) \, dx-\int \frac {e^{-\frac {6}{9+5 x-3 \log (x)}}}{(2+x)^2} \, dx\\ &=-\left (9 \int \frac {e^{-\frac {6}{9+5 x-3 \log (x)}}}{x (9+5 x-3 \log (x))^2} \, dx\right )+39 \int \frac {e^{-\frac {6}{9+5 x-3 \log (x)}}}{(2+x) (9+5 x-3 \log (x))^2} \, dx-\int \frac {e^{-\frac {6}{9+5 x-3 \log (x)}}}{(2+x)^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.77, size = 21, normalized size = 0.68 \begin {gather*} \frac {e^{\frac {6}{-9-5 x+3 \log (x)}}}{2+x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.77, size = 20, normalized size = 0.65 \begin {gather*} \frac {e^{\left (-\frac {6}{5 \, x - 3 \, \log \relax (x) + 9}\right )}}{x + 2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.36, size = 30, normalized size = 0.97 \begin {gather*} \frac {e^{\left (\frac {2 \, {\left (5 \, x - 3 \, \log \relax (x)\right )}}{3 \, {\left (5 \, x - 3 \, \log \relax (x) + 9\right )}} - \frac {2}{3}\right )}}{x + 2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.03, size = 21, normalized size = 0.68
method | result | size |
risch | \(\frac {{\mathrm e}^{\frac {6}{3 \ln \relax (x )-5 x -9}}}{2+x}\) | \(21\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} -\frac {25 \, x^{3} e^{\left (-\frac {6}{5 \, x - 3 \, \log \relax (x) + 9}\right )}}{6 \, {\left (5 \, x^{3} + 17 \, x^{2} + 8 \, x - 12\right )}} - \frac {10 \, x^{2} e^{\left (-\frac {6}{5 \, x - 3 \, \log \relax (x) + 9}\right )}}{5 \, x^{3} + 17 \, x^{2} + 8 \, x - 12} - \frac {13 \, x e^{\left (-\frac {6}{5 \, x - 3 \, \log \relax (x) + 9}\right )}}{2 \, {\left (5 \, x^{3} + 17 \, x^{2} + 8 \, x - 12\right )}} - \frac {6 \, e^{\left (-\frac {6}{5 \, x - 3 \, \log \relax (x) + 9}\right )}}{5 \, x^{3} + 17 \, x^{2} + 8 \, x - 12} - \int -\frac {3 \, {\left (2 \, {\left (5 \, x + 9\right )} \log \relax (x) - 3 \, \log \relax (x)^{2}\right )} e^{\left (-\frac {6}{5 \, x - 3 \, \log \relax (x) + 9}\right )}}{25 \, x^{4} + 190 \, x^{3} + 9 \, {\left (x^{2} + 4 \, x + 4\right )} \log \relax (x)^{2} + 541 \, x^{2} - 6 \, {\left (5 \, x^{3} + 29 \, x^{2} + 56 \, x + 36\right )} \log \relax (x) + 684 \, x + 324}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.66, size = 20, normalized size = 0.65 \begin {gather*} \frac {{\mathrm {e}}^{-\frac {6}{5\,x-3\,\ln \relax (x)+9}}}{x+2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.49, size = 15, normalized size = 0.48 \begin {gather*} \frac {e^{\frac {6}{- 5 x + 3 \log {\relax (x )} - 9}}}{x + 2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________