Optimal. Leaf size=22 \[ \frac {1}{2} x^3 \left (-24+e^x+\frac {1}{3 x}+2 x\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.08, antiderivative size = 26, normalized size of antiderivative = 1.18, number of steps used = 12, number of rules used = 5, integrand size = 33, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.152, Rules used = {12, 1593, 2196, 2176, 2194} \begin {gather*} x^4+\frac {e^x x^3}{2}-12 x^3+\frac {x^2}{6} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 1593
Rule 2176
Rule 2194
Rule 2196
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{6} \int \left (2 x-216 x^2+24 x^3+e^x \left (9 x^2+3 x^3\right )\right ) \, dx\\ &=\frac {x^2}{6}-12 x^3+x^4+\frac {1}{6} \int e^x \left (9 x^2+3 x^3\right ) \, dx\\ &=\frac {x^2}{6}-12 x^3+x^4+\frac {1}{6} \int e^x x^2 (9+3 x) \, dx\\ &=\frac {x^2}{6}-12 x^3+x^4+\frac {1}{6} \int \left (9 e^x x^2+3 e^x x^3\right ) \, dx\\ &=\frac {x^2}{6}-12 x^3+x^4+\frac {1}{2} \int e^x x^3 \, dx+\frac {3}{2} \int e^x x^2 \, dx\\ &=\frac {x^2}{6}+\frac {3 e^x x^2}{2}-12 x^3+\frac {e^x x^3}{2}+x^4-\frac {3}{2} \int e^x x^2 \, dx-3 \int e^x x \, dx\\ &=-3 e^x x+\frac {x^2}{6}-12 x^3+\frac {e^x x^3}{2}+x^4+3 \int e^x \, dx+3 \int e^x x \, dx\\ &=3 e^x+\frac {x^2}{6}-12 x^3+\frac {e^x x^3}{2}+x^4-3 \int e^x \, dx\\ &=\frac {x^2}{6}-12 x^3+\frac {e^x x^3}{2}+x^4\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.02, size = 22, normalized size = 1.00 \begin {gather*} \frac {1}{6} x^2 \left (1+3 \left (-24+e^x\right ) x+6 x^2\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.56, size = 21, normalized size = 0.95 \begin {gather*} x^{4} + \frac {1}{2} \, x^{3} e^{x} - 12 \, x^{3} + \frac {1}{6} \, x^{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.19, size = 21, normalized size = 0.95 \begin {gather*} x^{4} + \frac {1}{2} \, x^{3} e^{x} - 12 \, x^{3} + \frac {1}{6} \, x^{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.02, size = 22, normalized size = 1.00
method | result | size |
default | \(\frac {x^{2}}{6}-12 x^{3}+x^{4}+\frac {{\mathrm e}^{x} x^{3}}{2}\) | \(22\) |
norman | \(\frac {x^{2}}{6}-12 x^{3}+x^{4}+\frac {{\mathrm e}^{x} x^{3}}{2}\) | \(22\) |
risch | \(\frac {x^{2}}{6}-12 x^{3}+x^{4}+\frac {{\mathrm e}^{x} x^{3}}{2}\) | \(22\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.42, size = 21, normalized size = 0.95 \begin {gather*} x^{4} + \frac {1}{2} \, x^{3} e^{x} - 12 \, x^{3} + \frac {1}{6} \, x^{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.04, size = 17, normalized size = 0.77 \begin {gather*} x^2\,\left (\frac {x\,{\mathrm {e}}^x}{2}-12\,x+x^2+\frac {1}{6}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.09, size = 20, normalized size = 0.91 \begin {gather*} x^{4} + \frac {x^{3} e^{x}}{2} - 12 x^{3} + \frac {x^{2}}{6} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________