Optimal. Leaf size=34 \[ \frac {e^{-x+\frac {\left (e^x+x^2\right )^4}{9 e^2 x^2}}}{3 (3+x)} \]
________________________________________________________________________________________
Rubi [F] time = 19.62, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\exp \left (-2+\frac {e^{4 x}+4 e^{3 x} x^2-9 e^2 x^3+6 e^{2 x} x^4+4 e^x x^6+x^8}{9 e^2 x^2}\right ) \left (18 x^8+6 x^9+e^{4 x} \left (-6+10 x+4 x^2\right )+e^2 \left (-36 x^3-9 x^4\right )+e^{3 x} \left (36 x^3+12 x^4\right )+e^{2 x} \left (36 x^4+48 x^5+12 x^6\right )+e^x \left (48 x^6+28 x^7+4 x^8\right )\right )}{243 x^3+162 x^4+27 x^5} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {\exp \left (-2+\frac {e^{4 x}+4 e^{3 x} x^2-9 e^2 x^3+6 e^{2 x} x^4+4 e^x x^6+x^8}{9 e^2 x^2}\right ) \left (18 x^8+6 x^9+e^{4 x} \left (-6+10 x+4 x^2\right )+e^2 \left (-36 x^3-9 x^4\right )+e^{3 x} \left (36 x^3+12 x^4\right )+e^{2 x} \left (36 x^4+48 x^5+12 x^6\right )+e^x \left (48 x^6+28 x^7+4 x^8\right )\right )}{x^3 \left (243+162 x+27 x^2\right )} \, dx\\ &=\int \frac {\exp \left (-2+\frac {e^{4 x}+4 e^{3 x} x^2-9 e^2 x^3+6 e^{2 x} x^4+4 e^x x^6+x^8}{9 e^2 x^2}\right ) \left (18 x^8+6 x^9+e^{4 x} \left (-6+10 x+4 x^2\right )+e^2 \left (-36 x^3-9 x^4\right )+e^{3 x} \left (36 x^3+12 x^4\right )+e^{2 x} \left (36 x^4+48 x^5+12 x^6\right )+e^x \left (48 x^6+28 x^7+4 x^8\right )\right )}{27 x^3 (3+x)^2} \, dx\\ &=\frac {1}{27} \int \frac {\exp \left (-2+\frac {e^{4 x}+4 e^{3 x} x^2-9 e^2 x^3+6 e^{2 x} x^4+4 e^x x^6+x^8}{9 e^2 x^2}\right ) \left (18 x^8+6 x^9+e^{4 x} \left (-6+10 x+4 x^2\right )+e^2 \left (-36 x^3-9 x^4\right )+e^{3 x} \left (36 x^3+12 x^4\right )+e^{2 x} \left (36 x^4+48 x^5+12 x^6\right )+e^x \left (48 x^6+28 x^7+4 x^8\right )\right )}{x^3 (3+x)^2} \, dx\\ &=\frac {1}{27} \int \left (\frac {12 \exp \left (-2+3 x+\frac {e^{4 x}+4 e^{3 x} x^2-9 e^2 x^3+6 e^{2 x} x^4+4 e^x x^6+x^8}{9 e^2 x^2}\right )}{3+x}+\frac {12 \exp \left (-2+2 x+\frac {e^{4 x}+4 e^{3 x} x^2-9 e^2 x^3+6 e^{2 x} x^4+4 e^x x^6+x^8}{9 e^2 x^2}\right ) x (1+x)}{3+x}+\frac {4 \exp \left (-2+x+\frac {e^{4 x}+4 e^{3 x} x^2-9 e^2 x^3+6 e^{2 x} x^4+4 e^x x^6+x^8}{9 e^2 x^2}\right ) x^3 (4+x)}{3+x}+\frac {2 \exp \left (-2+4 x+\frac {e^{4 x}+4 e^{3 x} x^2-9 e^2 x^3+6 e^{2 x} x^4+4 e^x x^6+x^8}{9 e^2 x^2}\right ) (-1+2 x)}{x^3 (3+x)}+\frac {3 \exp \left (-2+\frac {e^{4 x}+4 e^{3 x} x^2-9 e^2 x^3+6 e^{2 x} x^4+4 e^x x^6+x^8}{9 e^2 x^2}\right ) \left (-12 e^2-3 e^2 x+6 x^5+2 x^6\right )}{(3+x)^2}\right ) \, dx\\ &=\frac {2}{27} \int \frac {\exp \left (-2+4 x+\frac {e^{4 x}+4 e^{3 x} x^2-9 e^2 x^3+6 e^{2 x} x^4+4 e^x x^6+x^8}{9 e^2 x^2}\right ) (-1+2 x)}{x^3 (3+x)} \, dx+\frac {1}{9} \int \frac {\exp \left (-2+\frac {e^{4 x}+4 e^{3 x} x^2-9 e^2 x^3+6 e^{2 x} x^4+4 e^x x^6+x^8}{9 e^2 x^2}\right ) \left (-12 e^2-3 e^2 x+6 x^5+2 x^6\right )}{(3+x)^2} \, dx+\frac {4}{27} \int \frac {\exp \left (-2+x+\frac {e^{4 x}+4 e^{3 x} x^2-9 e^2 x^3+6 e^{2 x} x^4+4 e^x x^6+x^8}{9 e^2 x^2}\right ) x^3 (4+x)}{3+x} \, dx+\frac {4}{9} \int \frac {\exp \left (-2+3 x+\frac {e^{4 x}+4 e^{3 x} x^2-9 e^2 x^3+6 e^{2 x} x^4+4 e^x x^6+x^8}{9 e^2 x^2}\right )}{3+x} \, dx+\frac {4}{9} \int \frac {\exp \left (-2+2 x+\frac {e^{4 x}+4 e^{3 x} x^2-9 e^2 x^3+6 e^{2 x} x^4+4 e^x x^6+x^8}{9 e^2 x^2}\right ) x (1+x)}{3+x} \, dx\\ &=\frac {2}{27} \int \left (-\frac {e^{-2+4 x+\frac {e^{4 x}+4 e^{3 x} x^2-9 e^2 x^3+6 e^{2 x} x^4+4 e^x x^6+x^8}{9 e^2 x^2}}}{3 x^3}+\frac {7 e^{-2+4 x+\frac {e^{4 x}+4 e^{3 x} x^2-9 e^2 x^3+6 e^{2 x} x^4+4 e^x x^6+x^8}{9 e^2 x^2}}}{9 x^2}-\frac {7 e^{-2+4 x+\frac {e^{4 x}+4 e^{3 x} x^2-9 e^2 x^3+6 e^{2 x} x^4+4 e^x x^6+x^8}{9 e^2 x^2}}}{27 x}+\frac {7 e^{-2+4 x+\frac {e^{4 x}+4 e^{3 x} x^2-9 e^2 x^3+6 e^{2 x} x^4+4 e^x x^6+x^8}{9 e^2 x^2}}}{27 (3+x)}\right ) \, dx+\frac {1}{9} \int \left (162 e^{-2+\frac {e^{4 x}+4 e^{3 x} x^2-9 e^2 x^3+6 e^{2 x} x^4+4 e^x x^6+x^8}{9 e^2 x^2}}-54 e^{-2+\frac {e^{4 x}+4 e^{3 x} x^2-9 e^2 x^3+6 e^{2 x} x^4+4 e^x x^6+x^8}{9 e^2 x^2}} x+18 e^{-2+\frac {e^{4 x}+4 e^{3 x} x^2-9 e^2 x^3+6 e^{2 x} x^4+4 e^x x^6+x^8}{9 e^2 x^2}} x^2-6 e^{-2+\frac {e^{4 x}+4 e^{3 x} x^2-9 e^2 x^3+6 e^{2 x} x^4+4 e^x x^6+x^8}{9 e^2 x^2}} x^3+2 e^{-2+\frac {e^{4 x}+4 e^{3 x} x^2-9 e^2 x^3+6 e^{2 x} x^4+4 e^x x^6+x^8}{9 e^2 x^2}} x^4-\frac {3 e^{\frac {e^{4 x}+4 e^{3 x} x^2-9 e^2 x^3+6 e^{2 x} x^4+4 e^x x^6+x^8}{9 e^2 x^2}}}{(3+x)^2}-\frac {3 e^{-2+\frac {e^{4 x}+4 e^{3 x} x^2-9 e^2 x^3+6 e^{2 x} x^4+4 e^x x^6+x^8}{9 e^2 x^2}} \left (162+e^2\right )}{3+x}\right ) \, dx+\frac {4}{27} \int \frac {e^{-\frac {-e^{4 x}+18 e^2 x^2-4 e^{3 x} x^2-6 e^{2 x} x^4-4 e^x x^6-x^8}{9 e^2 x^2}} x^3 (4+x)}{3+x} \, dx+\frac {4}{9} \int \frac {e^{-2+3 x+\frac {e^{4 x}+4 e^{3 x} x^2-9 e^2 x^3+6 e^{2 x} x^4+4 e^x x^6+x^8}{9 e^2 x^2}}}{3+x} \, dx+\frac {4}{9} \int \left (-2 e^{-2+2 x+\frac {e^{4 x}+4 e^{3 x} x^2-9 e^2 x^3+6 e^{2 x} x^4+4 e^x x^6+x^8}{9 e^2 x^2}}+e^{-2+2 x+\frac {e^{4 x}+4 e^{3 x} x^2-9 e^2 x^3+6 e^{2 x} x^4+4 e^x x^6+x^8}{9 e^2 x^2}} x+\frac {6 e^{-2+2 x+\frac {e^{4 x}+4 e^{3 x} x^2-9 e^2 x^3+6 e^{2 x} x^4+4 e^x x^6+x^8}{9 e^2 x^2}}}{3+x}\right ) \, dx\\ &=\text {Rest of rules removed due to large latex content} \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.19, size = 66, normalized size = 1.94 \begin {gather*} \frac {e^{\frac {e^{4 x}+4 e^{3 x} x^2-9 e^2 x^3+6 e^{2 x} x^4+4 e^x x^6+x^8}{9 e^2 x^2}}}{3 (3+x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.71, size = 63, normalized size = 1.85 \begin {gather*} \frac {e^{\left (\frac {{\left (x^{8} + 4 \, x^{6} e^{x} + 6 \, x^{4} e^{\left (2 \, x\right )} + 4 \, x^{2} e^{\left (3 \, x\right )} - 9 \, {\left (x^{3} + 2 \, x^{2}\right )} e^{2} + e^{\left (4 \, x\right )}\right )} e^{\left (-2\right )}}{9 \, x^{2}} + 2\right )}}{3 \, {\left (x + 3\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {{\left (6 \, x^{9} + 18 \, x^{8} - 9 \, {\left (x^{4} + 4 \, x^{3}\right )} e^{2} + 2 \, {\left (2 \, x^{2} + 5 \, x - 3\right )} e^{\left (4 \, x\right )} + 12 \, {\left (x^{4} + 3 \, x^{3}\right )} e^{\left (3 \, x\right )} + 12 \, {\left (x^{6} + 4 \, x^{5} + 3 \, x^{4}\right )} e^{\left (2 \, x\right )} + 4 \, {\left (x^{8} + 7 \, x^{7} + 12 \, x^{6}\right )} e^{x}\right )} e^{\left (\frac {{\left (x^{8} + 4 \, x^{6} e^{x} + 6 \, x^{4} e^{\left (2 \, x\right )} - 9 \, x^{3} e^{2} + 4 \, x^{2} e^{\left (3 \, x\right )} + e^{\left (4 \, x\right )}\right )} e^{\left (-2\right )}}{9 \, x^{2}} - 2\right )}}{27 \, {\left (x^{5} + 6 \, x^{4} + 9 \, x^{3}\right )}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.14, size = 60, normalized size = 1.76
method | result | size |
risch | \(\frac {{\mathrm e}^{-\frac {\left (-x^{8}-4 x^{6} {\mathrm e}^{x}-6 \,{\mathrm e}^{2 x} x^{4}+9 x^{3} {\mathrm e}^{2}-4 x^{2} {\mathrm e}^{3 x}-{\mathrm e}^{4 x}\right ) {\mathrm e}^{-2}}{9 x^{2}}}}{3 x +9}\) | \(60\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 1.69, size = 58, normalized size = 1.71 \begin {gather*} \frac {e^{\left (\frac {1}{9} \, x^{6} e^{\left (-2\right )} + \frac {4}{9} \, x^{4} e^{\left (x - 2\right )} + \frac {2}{3} \, x^{2} e^{\left (2 \, x - 2\right )} - x + \frac {e^{\left (4 \, x - 2\right )}}{9 \, x^{2}} + \frac {4}{9} \, e^{\left (3 \, x - 2\right )}\right )}}{3 \, {\left (x + 3\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.62, size = 56, normalized size = 1.65 \begin {gather*} \frac {{\mathrm {e}}^{\frac {{\mathrm {e}}^{-2}\,\left ({\mathrm {e}}^{4\,x}+4\,x^6\,{\mathrm {e}}^x+4\,x^2\,{\mathrm {e}}^{3\,x}+6\,x^4\,{\mathrm {e}}^{2\,x}-9\,x^3\,{\mathrm {e}}^2+x^8\right )}{9\,x^2}}}{3\,\left (x+3\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.49, size = 65, normalized size = 1.91 \begin {gather*} \frac {e^{\frac {\frac {x^{8}}{9} + \frac {4 x^{6} e^{x}}{9} + \frac {2 x^{4} e^{2 x}}{3} - x^{3} e^{2} + \frac {4 x^{2} e^{3 x}}{9} + \frac {e^{4 x}}{9}}{x^{2} e^{2}}}}{3 x + 9} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________