Optimal. Leaf size=26 \[ 2+(5-x) \left (2+\log \left (3+x^2+\frac {1}{x+\log ^2(2 x)}\right )\right ) \]
________________________________________________________________________________________
Rubi [F] time = 33.50, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-5 x-x^2-6 x^3+10 x^4-4 x^5+(-10+2 x) \log (2 x)+\left (-2 x-12 x^2+20 x^3-8 x^4\right ) \log ^2(2 x)+\left (-6 x+10 x^2-4 x^3\right ) \log ^4(2 x)+\left (-x^2-3 x^3-x^5+\left (-x-6 x^2-2 x^4\right ) \log ^2(2 x)+\left (-3 x-x^3\right ) \log ^4(2 x)\right ) \log \left (\frac {1+3 x+x^3+\left (3+x^2\right ) \log ^2(2 x)}{x+\log ^2(2 x)}\right )}{x^2+3 x^3+x^5+\left (x+6 x^2+2 x^4\right ) \log ^2(2 x)+\left (3 x+x^3\right ) \log ^4(2 x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (-\frac {5}{\left (x+\log ^2(2 x)\right ) \left (1+3 x+x^3+3 \log ^2(2 x)+x^2 \log ^2(2 x)\right )}-\frac {x}{\left (x+\log ^2(2 x)\right ) \left (1+3 x+x^3+3 \log ^2(2 x)+x^2 \log ^2(2 x)\right )}-\frac {6 x^2}{\left (x+\log ^2(2 x)\right ) \left (1+3 x+x^3+3 \log ^2(2 x)+x^2 \log ^2(2 x)\right )}+\frac {10 x^3}{\left (x+\log ^2(2 x)\right ) \left (1+3 x+x^3+3 \log ^2(2 x)+x^2 \log ^2(2 x)\right )}-\frac {4 x^4}{\left (x+\log ^2(2 x)\right ) \left (1+3 x+x^3+3 \log ^2(2 x)+x^2 \log ^2(2 x)\right )}+\frac {2 (-5+x) \log (2 x)}{x \left (x+\log ^2(2 x)\right ) \left (1+3 x+x^3+3 \log ^2(2 x)+x^2 \log ^2(2 x)\right )}-\frac {2 \left (1+6 x-10 x^2+4 x^3\right ) \log ^2(2 x)}{\left (x+\log ^2(2 x)\right ) \left (1+3 x+x^3+3 \log ^2(2 x)+x^2 \log ^2(2 x)\right )}-\frac {2 (-1+x) (-3+2 x) \log ^4(2 x)}{\left (x+\log ^2(2 x)\right ) \left (1+3 x+x^3+3 \log ^2(2 x)+x^2 \log ^2(2 x)\right )}-\log \left (\frac {1+3 x+x^3+\left (3+x^2\right ) \log ^2(2 x)}{x+\log ^2(2 x)}\right )\right ) \, dx\\ &=2 \int \frac {(-5+x) \log (2 x)}{x \left (x+\log ^2(2 x)\right ) \left (1+3 x+x^3+3 \log ^2(2 x)+x^2 \log ^2(2 x)\right )} \, dx-2 \int \frac {\left (1+6 x-10 x^2+4 x^3\right ) \log ^2(2 x)}{\left (x+\log ^2(2 x)\right ) \left (1+3 x+x^3+3 \log ^2(2 x)+x^2 \log ^2(2 x)\right )} \, dx-2 \int \frac {(-1+x) (-3+2 x) \log ^4(2 x)}{\left (x+\log ^2(2 x)\right ) \left (1+3 x+x^3+3 \log ^2(2 x)+x^2 \log ^2(2 x)\right )} \, dx-4 \int \frac {x^4}{\left (x+\log ^2(2 x)\right ) \left (1+3 x+x^3+3 \log ^2(2 x)+x^2 \log ^2(2 x)\right )} \, dx-5 \int \frac {1}{\left (x+\log ^2(2 x)\right ) \left (1+3 x+x^3+3 \log ^2(2 x)+x^2 \log ^2(2 x)\right )} \, dx-6 \int \frac {x^2}{\left (x+\log ^2(2 x)\right ) \left (1+3 x+x^3+3 \log ^2(2 x)+x^2 \log ^2(2 x)\right )} \, dx+10 \int \frac {x^3}{\left (x+\log ^2(2 x)\right ) \left (1+3 x+x^3+3 \log ^2(2 x)+x^2 \log ^2(2 x)\right )} \, dx-\int \frac {x}{\left (x+\log ^2(2 x)\right ) \left (1+3 x+x^3+3 \log ^2(2 x)+x^2 \log ^2(2 x)\right )} \, dx-\int \log \left (\frac {1+3 x+x^3+\left (3+x^2\right ) \log ^2(2 x)}{x+\log ^2(2 x)}\right ) \, dx\\ &=-x \log \left (\frac {1+3 x+x^3+\left (3+x^2\right ) \log ^2(2 x)}{x+\log ^2(2 x)}\right )-2 \int \left (\frac {3-5 x+2 x^2}{3+x^2}+\frac {x^2 \left (3-5 x+2 x^2\right )}{x+\log ^2(2 x)}-\frac {\left (3-5 x+2 x^2\right ) \left (1+3 x+x^3\right )^2}{\left (3+x^2\right ) \left (1+3 x+x^3+3 \log ^2(2 x)+x^2 \log ^2(2 x)\right )}\right ) \, dx-2 \int \left (-\frac {x \left (1+6 x-10 x^2+4 x^3\right )}{x+\log ^2(2 x)}+\frac {\left (1+3 x+x^3\right ) \left (1+6 x-10 x^2+4 x^3\right )}{1+3 x+x^3+3 \log ^2(2 x)+x^2 \log ^2(2 x)}\right ) \, dx+2 \int \left (\frac {(-5+x) \log (2 x)}{x \left (x+\log ^2(2 x)\right )}-\frac {(-5+x) \left (3+x^2\right ) \log (2 x)}{x \left (1+3 x+x^3+3 \log ^2(2 x)+x^2 \log ^2(2 x)\right )}\right ) \, dx-4 \int \left (\frac {x^4}{x+\log ^2(2 x)}-\frac {x^4 \left (3+x^2\right )}{1+3 x+x^3+3 \log ^2(2 x)+x^2 \log ^2(2 x)}\right ) \, dx-5 \int \left (\frac {1}{x+\log ^2(2 x)}+\frac {-3-x^2}{1+3 x+x^3+3 \log ^2(2 x)+x^2 \log ^2(2 x)}\right ) \, dx-6 \int \left (\frac {x^2}{x+\log ^2(2 x)}-\frac {x^2 \left (3+x^2\right )}{1+3 x+x^3+3 \log ^2(2 x)+x^2 \log ^2(2 x)}\right ) \, dx+10 \int \left (\frac {x^3}{x+\log ^2(2 x)}-\frac {x^3 \left (3+x^2\right )}{1+3 x+x^3+3 \log ^2(2 x)+x^2 \log ^2(2 x)}\right ) \, dx+\int \frac {-x+2 x^4-2 \log (2 x)+4 x^3 \log ^2(2 x)+2 x^2 \log ^4(2 x)}{\left (x+\log ^2(2 x)\right ) \left (1+3 x+x^3+\left (3+x^2\right ) \log ^2(2 x)\right )} \, dx-\int \left (\frac {x}{x+\log ^2(2 x)}-\frac {x \left (3+x^2\right )}{1+3 x+x^3+3 \log ^2(2 x)+x^2 \log ^2(2 x)}\right ) \, dx\\ &=-x \log \left (\frac {1+3 x+x^3+\left (3+x^2\right ) \log ^2(2 x)}{x+\log ^2(2 x)}\right )-2 \int \frac {3-5 x+2 x^2}{3+x^2} \, dx-2 \int \frac {x^2 \left (3-5 x+2 x^2\right )}{x+\log ^2(2 x)} \, dx+2 \int \frac {x \left (1+6 x-10 x^2+4 x^3\right )}{x+\log ^2(2 x)} \, dx+2 \int \frac {(-5+x) \log (2 x)}{x \left (x+\log ^2(2 x)\right )} \, dx+2 \int \frac {\left (3-5 x+2 x^2\right ) \left (1+3 x+x^3\right )^2}{\left (3+x^2\right ) \left (1+3 x+x^3+3 \log ^2(2 x)+x^2 \log ^2(2 x)\right )} \, dx-2 \int \frac {\left (1+3 x+x^3\right ) \left (1+6 x-10 x^2+4 x^3\right )}{1+3 x+x^3+3 \log ^2(2 x)+x^2 \log ^2(2 x)} \, dx-2 \int \frac {(-5+x) \left (3+x^2\right ) \log (2 x)}{x \left (1+3 x+x^3+3 \log ^2(2 x)+x^2 \log ^2(2 x)\right )} \, dx-4 \int \frac {x^4}{x+\log ^2(2 x)} \, dx+4 \int \frac {x^4 \left (3+x^2\right )}{1+3 x+x^3+3 \log ^2(2 x)+x^2 \log ^2(2 x)} \, dx-5 \int \frac {1}{x+\log ^2(2 x)} \, dx-5 \int \frac {-3-x^2}{1+3 x+x^3+3 \log ^2(2 x)+x^2 \log ^2(2 x)} \, dx-6 \int \frac {x^2}{x+\log ^2(2 x)} \, dx+6 \int \frac {x^2 \left (3+x^2\right )}{1+3 x+x^3+3 \log ^2(2 x)+x^2 \log ^2(2 x)} \, dx+10 \int \frac {x^3}{x+\log ^2(2 x)} \, dx-10 \int \frac {x^3 \left (3+x^2\right )}{1+3 x+x^3+3 \log ^2(2 x)+x^2 \log ^2(2 x)} \, dx-\int \frac {x}{x+\log ^2(2 x)} \, dx+\int \frac {x \left (3+x^2\right )}{1+3 x+x^3+3 \log ^2(2 x)+x^2 \log ^2(2 x)} \, dx+\int \left (\frac {2 x^2}{3+x^2}+\frac {-x-2 \log (2 x)}{x+\log ^2(2 x)}+\frac {9 x-2 x^2+6 x^3+x^5+18 \log (2 x)+12 x^2 \log (2 x)+2 x^4 \log (2 x)}{\left (3+x^2\right ) \left (1+3 x+x^3+3 \log ^2(2 x)+x^2 \log ^2(2 x)\right )}\right ) \, dx\\ &=\text {Rest of rules removed due to large latex content} \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [B] time = 0.69, size = 79, normalized size = 3.04 \begin {gather*} -2 x-5 \log \left (x+\log ^2(2 x)\right )+5 \log \left (1+3 x+x^3+3 \log ^2(2 x)+x^2 \log ^2(2 x)\right )-x \log \left (\frac {1+3 x+x^3+\left (3+x^2\right ) \log ^2(2 x)}{x+\log ^2(2 x)}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.53, size = 41, normalized size = 1.58 \begin {gather*} -{\left (x - 5\right )} \log \left (\frac {x^{3} + {\left (x^{2} + 3\right )} \log \left (2 \, x\right )^{2} + 3 \, x + 1}{\log \left (2 \, x\right )^{2} + x}\right ) - 2 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 3.00, size = 85, normalized size = 3.27 \begin {gather*} -x \log \left (x^{2} \log \left (2 \, x\right )^{2} + x^{3} + 3 \, \log \left (2 \, x\right )^{2} + 3 \, x + 1\right ) + x \log \left (\log \left (2 \, x\right )^{2} + x\right ) - 2 \, x + 5 \, \log \left (x^{2} \log \left (2 \, x\right )^{2} + x^{3} + 3 \, \log \left (2 \, x\right )^{2} + 3 \, x + 1\right ) - 5 \, \log \left (\log \left (2 \, x\right )^{2} + x\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.52, size = 365, normalized size = 14.04
method | result | size |
risch | \(-x \ln \left (x^{2} \ln \left (2 x \right )^{2}+x^{3}+3 \ln \left (2 x \right )^{2}+3 x +1\right )+x \ln \left (\ln \left (2 x \right )^{2}+x \right )+\frac {i \pi x \,\mathrm {csgn}\left (\frac {i}{\ln \left (2 x \right )^{2}+x}\right ) \mathrm {csgn}\left (i \left (x^{2} \ln \left (2 x \right )^{2}+x^{3}+3 \ln \left (2 x \right )^{2}+3 x +1\right )\right ) \mathrm {csgn}\left (\frac {i \left (x^{2} \ln \left (2 x \right )^{2}+x^{3}+3 \ln \left (2 x \right )^{2}+3 x +1\right )}{\ln \left (2 x \right )^{2}+x}\right )}{2}-\frac {i \pi x \,\mathrm {csgn}\left (\frac {i}{\ln \left (2 x \right )^{2}+x}\right ) \mathrm {csgn}\left (\frac {i \left (x^{2} \ln \left (2 x \right )^{2}+x^{3}+3 \ln \left (2 x \right )^{2}+3 x +1\right )}{\ln \left (2 x \right )^{2}+x}\right )^{2}}{2}-\frac {i \pi x \,\mathrm {csgn}\left (i \left (x^{2} \ln \left (2 x \right )^{2}+x^{3}+3 \ln \left (2 x \right )^{2}+3 x +1\right )\right ) \mathrm {csgn}\left (\frac {i \left (x^{2} \ln \left (2 x \right )^{2}+x^{3}+3 \ln \left (2 x \right )^{2}+3 x +1\right )}{\ln \left (2 x \right )^{2}+x}\right )^{2}}{2}+\frac {i \pi x \mathrm {csgn}\left (\frac {i \left (x^{2} \ln \left (2 x \right )^{2}+x^{3}+3 \ln \left (2 x \right )^{2}+3 x +1\right )}{\ln \left (2 x \right )^{2}+x}\right )^{3}}{2}-2 x +5 \ln \left (x^{2}+3\right )+5 \ln \left (\ln \left (2 x \right )^{2}+\frac {x^{3}+3 x +1}{x^{2}+3}\right )-5 \ln \left (\ln \left (2 x \right )^{2}+x \right )\) | \(365\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 1.24, size = 159, normalized size = 6.12 \begin {gather*} -x \log \left (x^{2} \log \relax (2)^{2} + x^{3} + {\left (x^{2} + 3\right )} \log \relax (x)^{2} + 3 \, \log \relax (2)^{2} + 2 \, {\left (x^{2} \log \relax (2) + 3 \, \log \relax (2)\right )} \log \relax (x) + 3 \, x + 1\right ) + x \log \left (\log \relax (2)^{2} + 2 \, \log \relax (2) \log \relax (x) + \log \relax (x)^{2} + x\right ) - 2 \, x + 5 \, \log \left (x^{2} + 3\right ) - 5 \, \log \left (\log \relax (2)^{2} + 2 \, \log \relax (2) \log \relax (x) + \log \relax (x)^{2} + x\right ) + 5 \, \log \left (\frac {x^{2} \log \relax (2)^{2} + x^{3} + {\left (x^{2} + 3\right )} \log \relax (x)^{2} + 3 \, \log \relax (2)^{2} + 2 \, {\left (x^{2} \log \relax (2) + 3 \, \log \relax (2)\right )} \log \relax (x) + 3 \, x + 1}{x^{2} + 3}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.04 \begin {gather*} \int -\frac {5\,x+{\ln \left (2\,x\right )}^4\,\left (4\,x^3-10\,x^2+6\,x\right )+x^2+6\,x^3-10\,x^4+4\,x^5-\ln \left (2\,x\right )\,\left (2\,x-10\right )+{\ln \left (2\,x\right )}^2\,\left (8\,x^4-20\,x^3+12\,x^2+2\,x\right )+\ln \left (\frac {3\,x+{\ln \left (2\,x\right )}^2\,\left (x^2+3\right )+x^3+1}{{\ln \left (2\,x\right )}^2+x}\right )\,\left ({\ln \left (2\,x\right )}^4\,\left (x^3+3\,x\right )+{\ln \left (2\,x\right )}^2\,\left (2\,x^4+6\,x^2+x\right )+x^2+3\,x^3+x^5\right )}{{\ln \left (2\,x\right )}^4\,\left (x^3+3\,x\right )+{\ln \left (2\,x\right )}^2\,\left (2\,x^4+6\,x^2+x\right )+x^2+3\,x^3+x^5} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [F(-2)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: PolynomialError} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________