Optimal. Leaf size=28 \[ \log \left (\frac {(8+x) \left (3+e^{(5+x)^2} \log (5-x)\right ) \log (x)}{4+x}\right ) \]
________________________________________________________________________________________
Rubi [F] time = 9.68, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-480-84 x+21 x^2+3 x^3+e^{25+10 x+x^2} \left (-160-28 x+7 x^2+x^3\right ) \log (5-x)+\left (60 x-12 x^2+e^{25+10 x+x^2} \left (32 x+12 x^2+x^3\right )+e^{25+10 x+x^2} \left (-1580 x-604 x^2+14 x^3+24 x^4+2 x^5\right ) \log (5-x)\right ) \log (x)}{\left (-480 x-84 x^2+21 x^3+3 x^4+e^{25+10 x+x^2} \left (-160 x-28 x^2+7 x^3+x^4\right ) \log (5-x)\right ) \log (x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-3 \left (-160-28 x+7 x^2+x^3\right )-x \left (-12 (-5+x)+e^{(5+x)^2} \left (32+12 x+x^2\right )\right ) \log (x)-e^{(5+x)^2} (-5+x) \log (5-x) \left (32+12 x+x^2+2 x \left (158+92 x+17 x^2+x^3\right ) \log (x)\right )}{x \left (160+28 x-7 x^2-x^3\right ) \left (3+e^{(5+x)^2} \log (5-x)\right ) \log (x)} \, dx\\ &=\int \left (-\frac {3 \left (1-50 \log (5-x)+2 x^2 \log (5-x)\right )}{(-5+x) \log (5-x) \left (3+e^{(5+x)^2} \log (5-x)\right )}+\frac {-160 \log (5-x)-28 x \log (5-x)+7 x^2 \log (5-x)+x^3 \log (5-x)+32 x \log (x)+12 x^2 \log (x)+x^3 \log (x)-1580 x \log (5-x) \log (x)-604 x^2 \log (5-x) \log (x)+14 x^3 \log (5-x) \log (x)+24 x^4 \log (5-x) \log (x)+2 x^5 \log (5-x) \log (x)}{(-5+x) x (4+x) (8+x) \log (5-x) \log (x)}\right ) \, dx\\ &=-\left (3 \int \frac {1-50 \log (5-x)+2 x^2 \log (5-x)}{(-5+x) \log (5-x) \left (3+e^{(5+x)^2} \log (5-x)\right )} \, dx\right )+\int \frac {-160 \log (5-x)-28 x \log (5-x)+7 x^2 \log (5-x)+x^3 \log (5-x)+32 x \log (x)+12 x^2 \log (x)+x^3 \log (x)-1580 x \log (5-x) \log (x)-604 x^2 \log (5-x) \log (x)+14 x^3 \log (5-x) \log (x)+24 x^4 \log (5-x) \log (x)+2 x^5 \log (5-x) \log (x)}{(-5+x) x (4+x) (8+x) \log (5-x) \log (x)} \, dx\\ &=-\left (3 \int \left (-\frac {50}{(-5+x) \left (3+e^{(5+x)^2} \log (5-x)\right )}+\frac {2 x^2}{(-5+x) \left (3+e^{(5+x)^2} \log (5-x)\right )}+\frac {1}{(-5+x) \log (5-x) \left (3+e^{(5+x)^2} \log (5-x)\right )}\right ) \, dx\right )+\int \frac {\frac {32+12 x+x^2}{(-5+x) \log (5-x)}+\frac {32+12 x+x^2+2 x \left (158+92 x+17 x^2+x^3\right ) \log (x)}{x \log (x)}}{(4+x) (8+x)} \, dx\\ &=-\left (3 \int \frac {1}{(-5+x) \log (5-x) \left (3+e^{(5+x)^2} \log (5-x)\right )} \, dx\right )-6 \int \frac {x^2}{(-5+x) \left (3+e^{(5+x)^2} \log (5-x)\right )} \, dx+150 \int \frac {1}{(-5+x) \left (3+e^{(5+x)^2} \log (5-x)\right )} \, dx+\int \left (\frac {32+12 x+x^2-1580 \log (5-x)-604 x \log (5-x)+14 x^2 \log (5-x)+24 x^3 \log (5-x)+2 x^4 \log (5-x)}{(-5+x) (4+x) (8+x) \log (5-x)}+\frac {1}{x \log (x)}\right ) \, dx\\ &=-\left (3 \int \frac {1}{(-5+x) \log (5-x) \left (3+e^{(5+x)^2} \log (5-x)\right )} \, dx\right )-6 \int \left (\frac {5}{3+e^{(5+x)^2} \log (5-x)}+\frac {25}{(-5+x) \left (3+e^{(5+x)^2} \log (5-x)\right )}+\frac {x}{3+e^{(5+x)^2} \log (5-x)}\right ) \, dx+150 \int \frac {1}{(-5+x) \left (3+e^{(5+x)^2} \log (5-x)\right )} \, dx+\int \frac {32+12 x+x^2-1580 \log (5-x)-604 x \log (5-x)+14 x^2 \log (5-x)+24 x^3 \log (5-x)+2 x^4 \log (5-x)}{(-5+x) (4+x) (8+x) \log (5-x)} \, dx+\int \frac {1}{x \log (x)} \, dx\\ &=-\left (3 \int \frac {1}{(-5+x) \log (5-x) \left (3+e^{(5+x)^2} \log (5-x)\right )} \, dx\right )-6 \int \frac {x}{3+e^{(5+x)^2} \log (5-x)} \, dx-30 \int \frac {1}{3+e^{(5+x)^2} \log (5-x)} \, dx+\int \frac {-32-12 x-x^2-2 \left (-790-302 x+7 x^2+12 x^3+x^4\right ) \log (5-x)}{(5-x) (4+x) (8+x) \log (5-x)} \, dx+\operatorname {Subst}\left (\int \frac {1}{x} \, dx,x,\log (x)\right )\\ &=\log (\log (x))-3 \int \frac {1}{(-5+x) \log (5-x) \left (3+e^{(5+x)^2} \log (5-x)\right )} \, dx-6 \int \frac {x}{3+e^{(5+x)^2} \log (5-x)} \, dx-30 \int \frac {1}{3+e^{(5+x)^2} \log (5-x)} \, dx+\int \left (\frac {2 \left (158+92 x+17 x^2+x^3\right )}{(4+x) (8+x)}+\frac {1}{(-5+x) \log (5-x)}\right ) \, dx\\ &=\log (\log (x))+2 \int \frac {158+92 x+17 x^2+x^3}{(4+x) (8+x)} \, dx-3 \int \frac {1}{(-5+x) \log (5-x) \left (3+e^{(5+x)^2} \log (5-x)\right )} \, dx-6 \int \frac {x}{3+e^{(5+x)^2} \log (5-x)} \, dx-30 \int \frac {1}{3+e^{(5+x)^2} \log (5-x)} \, dx+\int \frac {1}{(-5+x) \log (5-x)} \, dx\\ &=\log (\log (x))+2 \int \left (5+x-\frac {1}{2 (4+x)}+\frac {1}{2 (8+x)}\right ) \, dx-3 \int \frac {1}{(-5+x) \log (5-x) \left (3+e^{(5+x)^2} \log (5-x)\right )} \, dx-6 \int \frac {x}{3+e^{(5+x)^2} \log (5-x)} \, dx-30 \int \frac {1}{3+e^{(5+x)^2} \log (5-x)} \, dx+\operatorname {Subst}\left (\int \frac {1}{x \log (x)} \, dx,x,5-x\right )\\ &=10 x+x^2-\log (4+x)+\log (8+x)+\log (\log (x))-3 \int \frac {1}{(-5+x) \log (5-x) \left (3+e^{(5+x)^2} \log (5-x)\right )} \, dx-6 \int \frac {x}{3+e^{(5+x)^2} \log (5-x)} \, dx-30 \int \frac {1}{3+e^{(5+x)^2} \log (5-x)} \, dx+\operatorname {Subst}\left (\int \frac {1}{x} \, dx,x,\log (5-x)\right )\\ &=10 x+x^2-\log (4+x)+\log (8+x)+\log (\log (5-x))+\log (\log (x))-3 \int \frac {1}{(-5+x) \log (5-x) \left (3+e^{(5+x)^2} \log (5-x)\right )} \, dx-6 \int \frac {x}{3+e^{(5+x)^2} \log (5-x)} \, dx-30 \int \frac {1}{3+e^{(5+x)^2} \log (5-x)} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.23, size = 32, normalized size = 1.14 \begin {gather*} -25-\log (4+x)+\log (8+x)+\log \left (3+e^{(5+x)^2} \log (5-x)\right )+\log (\log (x)) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.55, size = 51, normalized size = 1.82 \begin {gather*} x^{2} + 10 \, x + \log \left ({\left (e^{\left (x^{2} + 10 \, x + 25\right )} \log \left (-x + 5\right ) + 3\right )} e^{\left (-x^{2} - 10 \, x - 25\right )}\right ) + \log \left (x + 8\right ) - \log \left (x + 4\right ) + \log \left (\log \relax (x)\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.25, size = 33, normalized size = 1.18 \begin {gather*} \log \left (e^{\left (x^{2} + 10 \, x + 25\right )} \log \left (-x + 5\right ) + 3\right ) + \log \left (x + 8\right ) - \log \left (x + 4\right ) + \log \left (\log \relax (x)\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 39, normalized size = 1.39
method | result | size |
risch | \(x^{2}+10 x -\ln \left (4+x \right )+\ln \left (x +8\right )+\ln \left (\ln \relax (x )\right )+\ln \left (\ln \left (5-x \right )+3 \,{\mathrm e}^{-\left (5+x \right )^{2}}\right )\) | \(39\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.43, size = 51, normalized size = 1.82 \begin {gather*} x^{2} + 10 \, x + \log \left ({\left (e^{\left (x^{2} + 10 \, x + 25\right )} \log \left (-x + 5\right ) + 3\right )} e^{\left (-x^{2} - 10 \, x - 25\right )}\right ) + \log \left (x + 8\right ) - \log \left (x + 4\right ) + \log \left (\log \relax (x)\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.72, size = 47, normalized size = 1.68 \begin {gather*} \ln \left (\ln \left (5-x\right )\right )+\ln \left (\ln \relax (x)\right )+\ln \left (\frac {{\mathrm {e}}^{{\left (x+5\right )}^2}\,\ln \left (5-x\right )+3}{\ln \left (5-x\right )}\right )-\mathrm {atan}\left (\frac {x\,1{}\mathrm {i}}{2}+3{}\mathrm {i}\right )\,2{}\mathrm {i} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.80, size = 39, normalized size = 1.39 \begin {gather*} - \log {\left (x + 4 \right )} + \log {\left (x + 8 \right )} + \log {\left (e^{x^{2} + 10 x + 25} + \frac {3}{\log {\left (5 - x \right )}} \right )} + \log {\left (\log {\relax (x )} \right )} + \log {\left (\log {\left (5 - x \right )} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________