Optimal. Leaf size=33 \[ \frac {x^2}{\left (3-e^{2 x}\right ) \left (-e^{e^4}+x+\log (3)\right )}+4 \log (x) \]
________________________________________________________________________________________
Rubi [F] time = 6.37, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{2 e^4} \left (36-24 e^{2 x}+4 e^{4 x}\right )+36 x^2+3 x^3+\left (72 x+6 x^2\right ) \log (3)+36 \log ^2(3)+e^{2 x} \left (-24 x^2-x^3+2 x^4+\left (-48 x-2 x^2+2 x^3\right ) \log (3)-24 \log ^2(3)\right )+e^{4 x} \left (4 x^2+8 x \log (3)+4 \log ^2(3)\right )+e^{e^4} \left (-72 x-6 x^2+e^{4 x} (-8 x-8 \log (3))-72 \log (3)+e^{2 x} \left (48 x+2 x^2-2 x^3+48 \log (3)\right )\right )}{9 x^3+e^{2 e^4} \left (9 x-6 e^{2 x} x+e^{4 x} x\right )+18 x^2 \log (3)+9 x \log ^2(3)+e^{2 x} \left (-6 x^3-12 x^2 \log (3)-6 x \log ^2(3)\right )+e^{4 x} \left (x^3+2 x^2 \log (3)+x \log ^2(3)\right )+e^{e^4} \left (-18 x^2-18 x \log (3)+e^{4 x} \left (-2 x^2-2 x \log (3)\right )+e^{2 x} \left (12 x^2+12 x \log (3)\right )\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {36 e^{2 e^4}-24 e^{2 \left (e^4+x\right )}+4 e^{2 e^4+4 x}-8 e^{e^4+4 x} (x+\log (3))+4 e^{4 x} (x+\log (3))^2-6 e^{e^4} \left (12 x+x^2+12 \log (3)\right )+e^{e^4+2 x} \left (48 x+2 x^2-2 x^3+48 \log (3)\right )+3 \left (x^3+24 x \log (3)+12 \log ^2(3)+x^2 (12+\log (9))\right )+e^{2 x} \left (2 x^4-48 x \log (3)-24 \log ^2(3)+x^3 (-1+\log (9))-x^2 (24+\log (9))\right )}{\left (3-e^{2 x}\right )^2 x \left (e^{e^4}-x-\log (3)\right )^2} \, dx\\ &=\int \left (\frac {4}{x}+\frac {12 x^2}{\left (3-e^{2 x}\right )^2 \left (-2 e^{e^4}+2 x+\log (9)\right )}+\frac {x \left (-2 e^{e^4}-2 x^2+x \left (1+2 e^{e^4}-\log (9)\right )+\log (9)\right )}{\left (3-e^{2 x}\right ) \left (e^{e^4}-x-\log (3)\right )^2}\right ) \, dx\\ &=4 \log (x)+12 \int \frac {x^2}{\left (3-e^{2 x}\right )^2 \left (-2 e^{e^4}+2 x+\log (9)\right )} \, dx+\int \frac {x \left (-2 e^{e^4}-2 x^2+x \left (1+2 e^{e^4}-\log (9)\right )+\log (9)\right )}{\left (3-e^{2 x}\right ) \left (e^{e^4}-x-\log (3)\right )^2} \, dx\\ &=4 \log (x)+12 \int \left (\frac {x}{2 \left (-3+e^{2 x}\right )^2}+\frac {2 e^{e^4}-\log (9)}{4 \left (-3+e^{2 x}\right )^2}-\frac {\left (2 e^{e^4}-\log (9)\right )^2}{4 \left (-3+e^{2 x}\right )^2 \left (2 e^{e^4}-2 x-\log (9)\right )}\right ) \, dx+\int \left (\frac {2 x}{-3+e^{2 x}}+\frac {\left (e^{e^4}-\log (3)\right )^2}{\left (-3+e^{2 x}\right ) \left (e^{e^4}-x-\log (3)\right )^2}-\frac {1-2 e^{e^4}+\frac {2 \log ^2(9)}{\log (81)}}{-3+e^{2 x}}-\frac {2 e^{2 e^4}+6 \log ^2(3)-\log ^2(9)-e^{e^4} \log (81)}{\left (-3+e^{2 x}\right ) \left (e^{e^4}-x-\log (3)\right )}\right ) \, dx\\ &=4 \log (x)+2 \int \frac {x}{-3+e^{2 x}} \, dx+6 \int \frac {x}{\left (-3+e^{2 x}\right )^2} \, dx+\left (e^{e^4}-\log (3)\right )^2 \int \frac {1}{\left (-3+e^{2 x}\right ) \left (e^{e^4}-x-\log (3)\right )^2} \, dx+\left (3 \left (2 e^{e^4}-\log (9)\right )\right ) \int \frac {1}{\left (-3+e^{2 x}\right )^2} \, dx-\left (3 \left (2 e^{e^4}-\log (9)\right )^2\right ) \int \frac {1}{\left (-3+e^{2 x}\right )^2 \left (2 e^{e^4}-2 x-\log (9)\right )} \, dx+\left (-1+2 e^{e^4}-\frac {2 \log ^2(9)}{\log (81)}\right ) \int \frac {1}{-3+e^{2 x}} \, dx+\left (-2 e^{2 e^4}-6 \log ^2(3)+\log ^2(9)+e^{e^4} \log (81)\right ) \int \frac {1}{\left (-3+e^{2 x}\right ) \left (e^{e^4}-x-\log (3)\right )} \, dx\\ &=-\frac {x^2}{3}+4 \log (x)+\frac {2}{3} \int \frac {e^{2 x} x}{-3+e^{2 x}} \, dx+2 \int \frac {e^{2 x} x}{\left (-3+e^{2 x}\right )^2} \, dx-2 \int \frac {x}{-3+e^{2 x}} \, dx+\left (e^{e^4}-\log (3)\right )^2 \int \frac {1}{\left (-3+e^{2 x}\right ) \left (e^{e^4}-x-\log (3)\right )^2} \, dx+\frac {1}{2} \left (3 \left (2 e^{e^4}-\log (9)\right )\right ) \operatorname {Subst}\left (\int \frac {1}{(-3+x)^2 x} \, dx,x,e^{2 x}\right )-\left (3 \left (2 e^{e^4}-\log (9)\right )^2\right ) \int \frac {1}{\left (-3+e^{2 x}\right )^2 \left (2 e^{e^4}-2 x-\log (9)\right )} \, dx+\frac {1}{2} \left (-1+2 e^{e^4}-\frac {2 \log ^2(9)}{\log (81)}\right ) \operatorname {Subst}\left (\int \frac {1}{(-3+x) x} \, dx,x,e^{2 x}\right )+\left (-2 e^{2 e^4}-6 \log ^2(3)+\log ^2(9)+e^{e^4} \log (81)\right ) \int \frac {1}{\left (-3+e^{2 x}\right ) \left (e^{e^4}-x-\log (3)\right )} \, dx\\ &=\frac {x}{3-e^{2 x}}+\frac {1}{3} x \log \left (1-\frac {e^{2 x}}{3}\right )+4 \log (x)-\frac {1}{3} \int \log \left (1-\frac {e^{2 x}}{3}\right ) \, dx-\frac {2}{3} \int \frac {e^{2 x} x}{-3+e^{2 x}} \, dx+\left (e^{e^4}-\log (3)\right )^2 \int \frac {1}{\left (-3+e^{2 x}\right ) \left (e^{e^4}-x-\log (3)\right )^2} \, dx+\frac {1}{2} \left (3 \left (2 e^{e^4}-\log (9)\right )\right ) \operatorname {Subst}\left (\int \left (\frac {1}{3 (-3+x)^2}-\frac {1}{9 (-3+x)}+\frac {1}{9 x}\right ) \, dx,x,e^{2 x}\right )-\left (3 \left (2 e^{e^4}-\log (9)\right )^2\right ) \int \frac {1}{\left (-3+e^{2 x}\right )^2 \left (2 e^{e^4}-2 x-\log (9)\right )} \, dx+\frac {1}{6} \left (-1+2 e^{e^4}-\frac {2 \log ^2(9)}{\log (81)}\right ) \operatorname {Subst}\left (\int \frac {1}{-3+x} \, dx,x,e^{2 x}\right )+\frac {1}{6} \left (1-2 e^{e^4}+\frac {2 \log ^2(9)}{\log (81)}\right ) \operatorname {Subst}\left (\int \frac {1}{x} \, dx,x,e^{2 x}\right )+\left (-2 e^{2 e^4}-6 \log ^2(3)+\log ^2(9)+e^{e^4} \log (81)\right ) \int \frac {1}{\left (-3+e^{2 x}\right ) \left (e^{e^4}-x-\log (3)\right )} \, dx+\int \frac {1}{-3+e^{2 x}} \, dx\\ &=\frac {x}{3-e^{2 x}}+\frac {2 e^{e^4}-\log (9)}{2 \left (3-e^{2 x}\right )}+\frac {1}{3} x \left (2 e^{e^4}-\log (9)\right )+\frac {1}{3} x \left (1-2 e^{e^4}+\frac {2 \log ^2(9)}{\log (81)}\right )-\frac {1}{6} \left (2 e^{e^4}-\log (9)\right ) \log \left (3-e^{2 x}\right )-\frac {1}{6} \left (1-2 e^{e^4}+\frac {2 \log ^2(9)}{\log (81)}\right ) \log \left (3-e^{2 x}\right )+4 \log (x)-\frac {1}{6} \operatorname {Subst}\left (\int \frac {\log \left (1-\frac {x}{3}\right )}{x} \, dx,x,e^{2 x}\right )+\frac {1}{3} \int \log \left (1-\frac {e^{2 x}}{3}\right ) \, dx+\frac {1}{2} \operatorname {Subst}\left (\int \frac {1}{(-3+x) x} \, dx,x,e^{2 x}\right )+\left (e^{e^4}-\log (3)\right )^2 \int \frac {1}{\left (-3+e^{2 x}\right ) \left (e^{e^4}-x-\log (3)\right )^2} \, dx-\left (3 \left (2 e^{e^4}-\log (9)\right )^2\right ) \int \frac {1}{\left (-3+e^{2 x}\right )^2 \left (2 e^{e^4}-2 x-\log (9)\right )} \, dx+\left (-2 e^{2 e^4}-6 \log ^2(3)+\log ^2(9)+e^{e^4} \log (81)\right ) \int \frac {1}{\left (-3+e^{2 x}\right ) \left (e^{e^4}-x-\log (3)\right )} \, dx\\ &=\frac {x}{3-e^{2 x}}+\frac {2 e^{e^4}-\log (9)}{2 \left (3-e^{2 x}\right )}+\frac {1}{3} x \left (2 e^{e^4}-\log (9)\right )+\frac {1}{3} x \left (1-2 e^{e^4}+\frac {2 \log ^2(9)}{\log (81)}\right )-\frac {1}{6} \left (2 e^{e^4}-\log (9)\right ) \log \left (3-e^{2 x}\right )-\frac {1}{6} \left (1-2 e^{e^4}+\frac {2 \log ^2(9)}{\log (81)}\right ) \log \left (3-e^{2 x}\right )+4 \log (x)+\frac {1}{6} \text {Li}_2\left (\frac {e^{2 x}}{3}\right )+\frac {1}{6} \operatorname {Subst}\left (\int \frac {1}{-3+x} \, dx,x,e^{2 x}\right )-\frac {1}{6} \operatorname {Subst}\left (\int \frac {1}{x} \, dx,x,e^{2 x}\right )+\frac {1}{6} \operatorname {Subst}\left (\int \frac {\log \left (1-\frac {x}{3}\right )}{x} \, dx,x,e^{2 x}\right )+\left (e^{e^4}-\log (3)\right )^2 \int \frac {1}{\left (-3+e^{2 x}\right ) \left (e^{e^4}-x-\log (3)\right )^2} \, dx-\left (3 \left (2 e^{e^4}-\log (9)\right )^2\right ) \int \frac {1}{\left (-3+e^{2 x}\right )^2 \left (2 e^{e^4}-2 x-\log (9)\right )} \, dx+\left (-2 e^{2 e^4}-6 \log ^2(3)+\log ^2(9)+e^{e^4} \log (81)\right ) \int \frac {1}{\left (-3+e^{2 x}\right ) \left (e^{e^4}-x-\log (3)\right )} \, dx\\ &=-\frac {x}{3}+\frac {x}{3-e^{2 x}}+\frac {2 e^{e^4}-\log (9)}{2 \left (3-e^{2 x}\right )}+\frac {1}{3} x \left (2 e^{e^4}-\log (9)\right )+\frac {1}{3} x \left (1-2 e^{e^4}+\frac {2 \log ^2(9)}{\log (81)}\right )+\frac {1}{6} \log \left (3-e^{2 x}\right )-\frac {1}{6} \left (2 e^{e^4}-\log (9)\right ) \log \left (3-e^{2 x}\right )-\frac {1}{6} \left (1-2 e^{e^4}+\frac {2 \log ^2(9)}{\log (81)}\right ) \log \left (3-e^{2 x}\right )+4 \log (x)+\left (e^{e^4}-\log (3)\right )^2 \int \frac {1}{\left (-3+e^{2 x}\right ) \left (e^{e^4}-x-\log (3)\right )^2} \, dx-\left (3 \left (2 e^{e^4}-\log (9)\right )^2\right ) \int \frac {1}{\left (-3+e^{2 x}\right )^2 \left (2 e^{e^4}-2 x-\log (9)\right )} \, dx+\left (-2 e^{2 e^4}-6 \log ^2(3)+\log ^2(9)+e^{e^4} \log (81)\right ) \int \frac {1}{\left (-3+e^{2 x}\right ) \left (e^{e^4}-x-\log (3)\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.25, size = 47, normalized size = 1.42 \begin {gather*} -\frac {x^2 \left (-2 e^{e^4}+2 x+\log (9)\right )}{2 \left (-3+e^{2 x}\right ) \left (-e^{e^4}+x+\log (3)\right )^2}+4 \log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.64, size = 68, normalized size = 2.06 \begin {gather*} -\frac {x^{2} - 4 \, {\left ({\left (x + \log \relax (3)\right )} e^{\left (2 \, x\right )} - {\left (e^{\left (2 \, x\right )} - 3\right )} e^{\left (e^{4}\right )} - 3 \, x - 3 \, \log \relax (3)\right )} \log \relax (x)}{{\left (x + \log \relax (3)\right )} e^{\left (2 \, x\right )} - {\left (e^{\left (2 \, x\right )} - 3\right )} e^{\left (e^{4}\right )} - 3 \, x - 3 \, \log \relax (3)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.30, size = 92, normalized size = 2.79 \begin {gather*} \frac {4 \, x e^{\left (2 \, x\right )} \log \relax (x) + 4 \, e^{\left (2 \, x\right )} \log \relax (3) \log \relax (x) - x^{2} - 12 \, x \log \relax (x) - 4 \, e^{\left (2 \, x + e^{4}\right )} \log \relax (x) + 12 \, e^{\left (e^{4}\right )} \log \relax (x) - 12 \, \log \relax (3) \log \relax (x)}{x e^{\left (2 \, x\right )} + e^{\left (2 \, x\right )} \log \relax (3) - 3 \, x - e^{\left (2 \, x + e^{4}\right )} + 3 \, e^{\left (e^{4}\right )} - 3 \, \log \relax (3)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.88, size = 30, normalized size = 0.91
method | result | size |
norman | \(-\frac {x^{2}}{\left ({\mathrm e}^{2 x}-3\right ) \left (\ln \relax (3)+x -{\mathrm e}^{{\mathrm e}^{4}}\right )}+4 \ln \relax (x )\) | \(30\) |
risch | \(-\frac {x^{2}}{\left ({\mathrm e}^{2 x}-3\right ) \left (\ln \relax (3)+x -{\mathrm e}^{{\mathrm e}^{4}}\right )}+4 \ln \relax (x )\) | \(30\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.60, size = 39, normalized size = 1.18 \begin {gather*} -\frac {x^{2}}{{\left (x - e^{\left (e^{4}\right )} + \log \relax (3)\right )} e^{\left (2 \, x\right )} - 3 \, x + 3 \, e^{\left (e^{4}\right )} - 3 \, \log \relax (3)} + 4 \, \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.46, size = 44, normalized size = 1.33 \begin {gather*} 4\,\ln \relax (x)-\frac {x^2\,\ln \relax (3)-x^2\,{\mathrm {e}}^{{\mathrm {e}}^4}+x^3}{\left ({\mathrm {e}}^{2\,x}-3\right )\,{\left (x+\ln \relax (3)-{\mathrm {e}}^{{\mathrm {e}}^4}\right )}^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.36, size = 37, normalized size = 1.12 \begin {gather*} - \frac {x^{2}}{- 3 x + \left (x - e^{e^{4}} + \log {\relax (3 )}\right ) e^{2 x} - 3 \log {\relax (3 )} + 3 e^{e^{4}}} + 4 \log {\relax (x )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________