Optimal. Leaf size=14 \[ x+\left (\frac {x}{3}+\log \left (\frac {1}{x}\right )\right )^2 \]
________________________________________________________________________________________
Rubi [A] time = 0.03, antiderivative size = 24, normalized size of antiderivative = 1.71, number of steps used = 6, number of rules used = 5, integrand size = 26, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.192, Rules used = {12, 14, 2346, 2301, 2295} \begin {gather*} \frac {x^2}{9}+x+\log ^2\left (\frac {1}{x}\right )+\frac {2}{3} x \log \left (\frac {1}{x}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 14
Rule 2295
Rule 2301
Rule 2346
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{9} \int \frac {3 x+2 x^2+(-18+6 x) \log \left (\frac {1}{x}\right )}{x} \, dx\\ &=\frac {1}{9} \int \left (3+2 x+\frac {6 (-3+x) \log \left (\frac {1}{x}\right )}{x}\right ) \, dx\\ &=\frac {x}{3}+\frac {x^2}{9}+\frac {2}{3} \int \frac {(-3+x) \log \left (\frac {1}{x}\right )}{x} \, dx\\ &=\frac {x}{3}+\frac {x^2}{9}+\frac {2}{3} \int \log \left (\frac {1}{x}\right ) \, dx-2 \int \frac {\log \left (\frac {1}{x}\right )}{x} \, dx\\ &=x+\frac {x^2}{9}+\frac {2}{3} x \log \left (\frac {1}{x}\right )+\log ^2\left (\frac {1}{x}\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.00, size = 24, normalized size = 1.71 \begin {gather*} x+\frac {x^2}{9}+\frac {2}{3} x \log \left (\frac {1}{x}\right )+\log ^2\left (\frac {1}{x}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.45, size = 20, normalized size = 1.43 \begin {gather*} \frac {1}{9} \, x^{2} + \frac {2}{3} \, x \log \left (\frac {1}{x}\right ) + \log \left (\frac {1}{x}\right )^{2} + x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.17, size = 16, normalized size = 1.14 \begin {gather*} \frac {1}{9} \, x^{2} - \frac {2}{3} \, x \log \relax (x) + \log \relax (x)^{2} + x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.03, size = 21, normalized size = 1.50
method | result | size |
derivativedivides | \(\ln \left (\frac {1}{x}\right )^{2}+\frac {2 x \ln \left (\frac {1}{x}\right )}{3}+x +\frac {x^{2}}{9}\) | \(21\) |
default | \(\ln \left (\frac {1}{x}\right )^{2}+\frac {2 x \ln \left (\frac {1}{x}\right )}{3}+x +\frac {x^{2}}{9}\) | \(21\) |
norman | \(\ln \left (\frac {1}{x}\right )^{2}+\frac {2 x \ln \left (\frac {1}{x}\right )}{3}+x +\frac {x^{2}}{9}\) | \(21\) |
risch | \(\ln \left (\frac {1}{x}\right )^{2}+\frac {2 x \ln \left (\frac {1}{x}\right )}{3}+x +\frac {x^{2}}{9}\) | \(21\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.37, size = 16, normalized size = 1.14 \begin {gather*} \frac {1}{9} \, x^{2} - \frac {2}{3} \, x \log \relax (x) + \log \relax (x)^{2} + x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.23, size = 20, normalized size = 1.43 \begin {gather*} \frac {x^2}{9}+\frac {2\,x\,\ln \left (\frac {1}{x}\right )}{3}+x+{\ln \left (\frac {1}{x}\right )}^2 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.10, size = 22, normalized size = 1.57 \begin {gather*} \frac {x^{2}}{9} + \frac {2 x \log {\left (\frac {1}{x} \right )}}{3} + x + \log {\left (\frac {1}{x} \right )}^{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________