Optimal. Leaf size=32 \[ x \left (2 x+\frac {2+e^{-x} (1-x)}{4 e^2 (x+\log (x))}\right ) \]
________________________________________________________________________________________
Rubi [F] time = 4.87, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-1+x-2 x^2+x^3+e^x \left (-2+16 e^2 x^3\right )+\left (1-3 x+x^2+e^x \left (2+32 e^2 x^2\right )\right ) \log (x)+16 e^{2+x} x \log ^2(x)}{4 e^{2+x} x^2+8 e^{2+x} x \log (x)+4 e^{2+x} \log ^2(x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{-2-x} \left (-1+x-2 x^2+x^3+e^x \left (-2+16 e^2 x^3\right )+\left (1-3 x+x^2+e^x \left (2+32 e^2 x^2\right )\right ) \log (x)+16 e^{2+x} x \log ^2(x)\right )}{4 (x+\log (x))^2} \, dx\\ &=\frac {1}{4} \int \frac {e^{-2-x} \left (-1+x-2 x^2+x^3+e^x \left (-2+16 e^2 x^3\right )+\left (1-3 x+x^2+e^x \left (2+32 e^2 x^2\right )\right ) \log (x)+16 e^{2+x} x \log ^2(x)\right )}{(x+\log (x))^2} \, dx\\ &=\frac {1}{4} \int \left (-\frac {e^{-2-x}}{(x+\log (x))^2}+\frac {e^{-2-x} x}{(x+\log (x))^2}-\frac {2 e^{-2-x} x^2}{(x+\log (x))^2}+\frac {e^{-2-x} x^3}{(x+\log (x))^2}+\frac {e^{-2-x} \log (x)}{(x+\log (x))^2}-\frac {3 e^{-2-x} x \log (x)}{(x+\log (x))^2}+\frac {e^{-2-x} x^2 \log (x)}{(x+\log (x))^2}+\frac {2 \left (-1+8 e^2 x^3+\log (x)+16 e^2 x^2 \log (x)+8 e^2 x \log ^2(x)\right )}{e^2 (x+\log (x))^2}\right ) \, dx\\ &=-\left (\frac {1}{4} \int \frac {e^{-2-x}}{(x+\log (x))^2} \, dx\right )+\frac {1}{4} \int \frac {e^{-2-x} x}{(x+\log (x))^2} \, dx+\frac {1}{4} \int \frac {e^{-2-x} x^3}{(x+\log (x))^2} \, dx+\frac {1}{4} \int \frac {e^{-2-x} \log (x)}{(x+\log (x))^2} \, dx+\frac {1}{4} \int \frac {e^{-2-x} x^2 \log (x)}{(x+\log (x))^2} \, dx-\frac {1}{2} \int \frac {e^{-2-x} x^2}{(x+\log (x))^2} \, dx-\frac {3}{4} \int \frac {e^{-2-x} x \log (x)}{(x+\log (x))^2} \, dx+\frac {\int \frac {-1+8 e^2 x^3+\log (x)+16 e^2 x^2 \log (x)+8 e^2 x \log ^2(x)}{(x+\log (x))^2} \, dx}{2 e^2}\\ &=-\left (\frac {1}{4} \int \frac {e^{-2-x}}{(x+\log (x))^2} \, dx\right )+\frac {1}{4} \int \frac {e^{-2-x} x}{(x+\log (x))^2} \, dx+\frac {1}{4} \int \frac {e^{-2-x} x^3}{(x+\log (x))^2} \, dx+\frac {1}{4} \int \left (-\frac {e^{-2-x} x}{(x+\log (x))^2}+\frac {e^{-2-x}}{x+\log (x)}\right ) \, dx+\frac {1}{4} \int \left (-\frac {e^{-2-x} x^3}{(x+\log (x))^2}+\frac {e^{-2-x} x^2}{x+\log (x)}\right ) \, dx-\frac {1}{2} \int \frac {e^{-2-x} x^2}{(x+\log (x))^2} \, dx-\frac {3}{4} \int \left (-\frac {e^{-2-x} x^2}{(x+\log (x))^2}+\frac {e^{-2-x} x}{x+\log (x)}\right ) \, dx+\frac {\int \left (8 e^2 x+\frac {-1-x}{(x+\log (x))^2}+\frac {1}{x+\log (x)}\right ) \, dx}{2 e^2}\\ &=2 x^2-\frac {1}{4} \int \frac {e^{-2-x}}{(x+\log (x))^2} \, dx+\frac {1}{4} \int \frac {e^{-2-x}}{x+\log (x)} \, dx+\frac {1}{4} \int \frac {e^{-2-x} x^2}{x+\log (x)} \, dx-\frac {1}{2} \int \frac {e^{-2-x} x^2}{(x+\log (x))^2} \, dx+\frac {3}{4} \int \frac {e^{-2-x} x^2}{(x+\log (x))^2} \, dx-\frac {3}{4} \int \frac {e^{-2-x} x}{x+\log (x)} \, dx+\frac {\int \frac {-1-x}{(x+\log (x))^2} \, dx}{2 e^2}+\frac {\int \frac {1}{x+\log (x)} \, dx}{2 e^2}\\ &=2 x^2-\frac {1}{4} \int \frac {e^{-2-x}}{(x+\log (x))^2} \, dx+\frac {1}{4} \int \frac {e^{-2-x}}{x+\log (x)} \, dx+\frac {1}{4} \int \frac {e^{-2-x} x^2}{x+\log (x)} \, dx-\frac {1}{2} \int \frac {e^{-2-x} x^2}{(x+\log (x))^2} \, dx+\frac {3}{4} \int \frac {e^{-2-x} x^2}{(x+\log (x))^2} \, dx-\frac {3}{4} \int \frac {e^{-2-x} x}{x+\log (x)} \, dx+\frac {\int \frac {1}{x+\log (x)} \, dx}{2 e^2}+\frac {\int \left (-\frac {1}{(x+\log (x))^2}-\frac {x}{(x+\log (x))^2}\right ) \, dx}{2 e^2}\\ &=2 x^2-\frac {1}{4} \int \frac {e^{-2-x}}{(x+\log (x))^2} \, dx+\frac {1}{4} \int \frac {e^{-2-x}}{x+\log (x)} \, dx+\frac {1}{4} \int \frac {e^{-2-x} x^2}{x+\log (x)} \, dx-\frac {1}{2} \int \frac {e^{-2-x} x^2}{(x+\log (x))^2} \, dx+\frac {3}{4} \int \frac {e^{-2-x} x^2}{(x+\log (x))^2} \, dx-\frac {3}{4} \int \frac {e^{-2-x} x}{x+\log (x)} \, dx-\frac {\int \frac {1}{(x+\log (x))^2} \, dx}{2 e^2}-\frac {\int \frac {x}{(x+\log (x))^2} \, dx}{2 e^2}+\frac {\int \frac {1}{x+\log (x)} \, dx}{2 e^2}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 5.10, size = 33, normalized size = 1.03 \begin {gather*} \frac {1}{4} x \left (8 x+\frac {e^{-2-x} \left (1+2 e^x-x\right )}{x+\log (x)}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.66, size = 56, normalized size = 1.75 \begin {gather*} \frac {8 \, x^{2} e^{\left (x + 4\right )} \log \relax (x) - {\left (x^{2} - x\right )} e^{2} + 2 \, {\left (4 \, x^{3} e^{2} + x\right )} e^{\left (x + 2\right )}}{4 \, {\left (x e^{\left (x + 4\right )} + e^{\left (x + 4\right )} \log \relax (x)\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.18, size = 49, normalized size = 1.53 \begin {gather*} \frac {8 \, x^{3} e^{2} + 8 \, x^{2} e^{2} \log \relax (x) - x^{2} e^{\left (-x\right )} + x e^{\left (-x\right )} + 2 \, x}{4 \, {\left (x e^{2} + e^{2} \log \relax (x)\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.22, size = 29, normalized size = 0.91
method | result | size |
risch | \(2 x^{2}-\frac {x \left (x -2 \,{\mathrm e}^{x}-1\right ) {\mathrm e}^{-x -2}}{4 \left (x +\ln \relax (x )\right )}\) | \(29\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.45, size = 47, normalized size = 1.47 \begin {gather*} \frac {8 \, x^{3} e^{2} + 8 \, x^{2} e^{2} \log \relax (x) - {\left (x^{2} - x\right )} e^{\left (-x\right )} + 2 \, x}{4 \, {\left (x e^{2} + e^{2} \log \relax (x)\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.62, size = 122, normalized size = 3.81 \begin {gather*} \frac {\frac {x\,{\mathrm {e}}^{-x-2}\,\left (2\,{\mathrm {e}}^x-x+2\,x^2-x^3+1\right )}{4\,\left (x+1\right )}-\frac {x\,{\mathrm {e}}^{-x-2}\,\ln \relax (x)\,\left (2\,{\mathrm {e}}^x-3\,x+x^2+1\right )}{4\,\left (x+1\right )}}{x+\ln \relax (x)}-\frac {1}{2\,{\mathrm {e}}^2+2\,x\,{\mathrm {e}}^2}+2\,x^2+\frac {{\mathrm {e}}^{-x}\,\left (\frac {{\mathrm {e}}^{-2}\,x^3}{4}-\frac {3\,{\mathrm {e}}^{-2}\,x^2}{4}+\frac {{\mathrm {e}}^{-2}\,x}{4}\right )}{x+1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.38, size = 44, normalized size = 1.38 \begin {gather*} 2 x^{2} + \frac {x}{2 x e^{2} + 2 e^{2} \log {\relax (x )}} + \frac {\left (- x^{2} + x\right ) e^{- x}}{4 x e^{2} + 4 e^{2} \log {\relax (x )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________