Optimal. Leaf size=19 \[ e^{\frac {1}{25} x^2 (x+\log (3)-25 \log (5 x))} \]
________________________________________________________________________________________
Rubi [A] time = 0.19, antiderivative size = 33, normalized size of antiderivative = 1.74, number of steps used = 3, number of rules used = 3, integrand size = 50, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.060, Rules used = {6, 12, 6706} \begin {gather*} 3^{\frac {x^2}{25}} 5^{-x^2} e^{\frac {x^3}{25}} x^{-x^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6
Rule 12
Rule 6706
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {1}{25} e^{\frac {1}{25} \left (x^3+x^2 \log (3)-25 x^2 \log (5 x)\right )} \left (3 x^2+x (-25+2 \log (3))-50 x \log (5 x)\right ) \, dx\\ &=\frac {1}{25} \int e^{\frac {1}{25} \left (x^3+x^2 \log (3)-25 x^2 \log (5 x)\right )} \left (3 x^2+x (-25+2 \log (3))-50 x \log (5 x)\right ) \, dx\\ &=3^{\frac {x^2}{25}} 5^{-x^2} e^{\frac {x^3}{25}} x^{-x^2}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [F] time = 0.91, size = 53, normalized size = 2.79 \begin {gather*} \frac {1}{25} \int e^{\frac {1}{25} \left (x^3+x^2 \log (3)-25 x^2 \log (5 x)\right )} \left (-25 x+3 x^2+2 x \log (3)-50 x \log (5 x)\right ) \, dx \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.59, size = 23, normalized size = 1.21 \begin {gather*} e^{\left (\frac {1}{25} \, x^{3} + \frac {1}{25} \, x^{2} \log \relax (3) - x^{2} \log \left (5 \, x\right )\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.19, size = 23, normalized size = 1.21 \begin {gather*} e^{\left (\frac {1}{25} \, x^{3} + \frac {1}{25} \, x^{2} \log \relax (3) - x^{2} \log \left (5 \, x\right )\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.05, size = 24, normalized size = 1.26
method | result | size |
norman | \({\mathrm e}^{-x^{2} \ln \left (5 x \right )+\frac {x^{2} \ln \relax (3)}{25}+\frac {x^{3}}{25}}\) | \(24\) |
risch | \(\left (5 x \right )^{-x^{2}} 3^{\frac {x^{2}}{25}} {\mathrm e}^{\frac {x^{3}}{25}}\) | \(24\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.37, size = 23, normalized size = 1.21 \begin {gather*} e^{\left (\frac {1}{25} \, x^{3} + \frac {1}{25} \, x^{2} \log \relax (3) - x^{2} \log \left (5 \, x\right )\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.17, size = 26, normalized size = 1.37 \begin {gather*} \frac {{\left (\frac {1}{5}\right )}^{x^2}\,3^{\frac {x^2}{25}}\,{\mathrm {e}}^{\frac {x^3}{25}}}{x^{x^2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.33, size = 22, normalized size = 1.16 \begin {gather*} e^{\frac {x^{3}}{25} - x^{2} \log {\left (5 x \right )} + \frac {x^{2} \log {\relax (3 )}}{25}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________