Optimal. Leaf size=26 \[ \frac {3 x^2}{2 \left (-3 e^{-2 x}+2 x-\frac {25}{\log (x)}\right )} \]
________________________________________________________________________________________
Rubi [F] time = 23.99, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-75 e^{4 x} x-150 e^{4 x} x \log (x)+\left (6 e^{4 x} x^2+e^{2 x} \left (-18 x-18 x^2\right )\right ) \log ^2(x)}{1250 e^{4 x}+\left (300 e^{2 x}-200 e^{4 x} x\right ) \log (x)+\left (18-24 e^{2 x} x+8 e^{4 x} x^2\right ) \log ^2(x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {3 e^{2 x} x \left (-25 e^{2 x}-50 e^{2 x} \log (x)+2 \left (-3+\left (-3+e^{2 x}\right ) x\right ) \log ^2(x)\right )}{2 \left (25 e^{2 x}-\left (-3+2 e^{2 x} x\right ) \log (x)\right )^2} \, dx\\ &=\frac {3}{2} \int \frac {e^{2 x} x \left (-25 e^{2 x}-50 e^{2 x} \log (x)+2 \left (-3+\left (-3+e^{2 x}\right ) x\right ) \log ^2(x)\right )}{\left (25 e^{2 x}-\left (-3+2 e^{2 x} x\right ) \log (x)\right )^2} \, dx\\ &=\frac {3}{2} \int \left (\frac {e^{2 x} x \left (-25-50 \log (x)+2 x \log ^2(x)\right )}{(-25+2 x \log (x)) \left (-25 e^{2 x}-3 \log (x)+2 e^{2 x} x \log (x)\right )}-\frac {3 e^{2 x} x \log (x) \left (25-50 x \log (x)+2 x \log ^2(x)+4 x^2 \log ^2(x)\right )}{(-25+2 x \log (x)) \left (-25 e^{2 x}-3 \log (x)+2 e^{2 x} x \log (x)\right )^2}\right ) \, dx\\ &=\frac {3}{2} \int \frac {e^{2 x} x \left (-25-50 \log (x)+2 x \log ^2(x)\right )}{(-25+2 x \log (x)) \left (-25 e^{2 x}-3 \log (x)+2 e^{2 x} x \log (x)\right )} \, dx-\frac {9}{2} \int \frac {e^{2 x} x \log (x) \left (25-50 x \log (x)+2 x \log ^2(x)+4 x^2 \log ^2(x)\right )}{(-25+2 x \log (x)) \left (-25 e^{2 x}-3 \log (x)+2 e^{2 x} x \log (x)\right )^2} \, dx\\ &=\frac {3}{2} \int \left (-\frac {25 e^{2 x} x}{(-25+2 x \log (x)) \left (-25 e^{2 x}-3 \log (x)+2 e^{2 x} x \log (x)\right )}-\frac {50 e^{2 x} x \log (x)}{(-25+2 x \log (x)) \left (-25 e^{2 x}-3 \log (x)+2 e^{2 x} x \log (x)\right )}+\frac {2 e^{2 x} x^2 \log ^2(x)}{(-25+2 x \log (x)) \left (-25 e^{2 x}-3 \log (x)+2 e^{2 x} x \log (x)\right )}\right ) \, dx-\frac {9}{2} \int \left (\frac {25 e^{2 x} x \log (x)}{(-25+2 x \log (x)) \left (-25 e^{2 x}-3 \log (x)+2 e^{2 x} x \log (x)\right )^2}-\frac {50 e^{2 x} x^2 \log ^2(x)}{(-25+2 x \log (x)) \left (-25 e^{2 x}-3 \log (x)+2 e^{2 x} x \log (x)\right )^2}+\frac {2 e^{2 x} x^2 \log ^3(x)}{(-25+2 x \log (x)) \left (-25 e^{2 x}-3 \log (x)+2 e^{2 x} x \log (x)\right )^2}+\frac {4 e^{2 x} x^3 \log ^3(x)}{(-25+2 x \log (x)) \left (-25 e^{2 x}-3 \log (x)+2 e^{2 x} x \log (x)\right )^2}\right ) \, dx\\ &=3 \int \frac {e^{2 x} x^2 \log ^2(x)}{(-25+2 x \log (x)) \left (-25 e^{2 x}-3 \log (x)+2 e^{2 x} x \log (x)\right )} \, dx-9 \int \frac {e^{2 x} x^2 \log ^3(x)}{(-25+2 x \log (x)) \left (-25 e^{2 x}-3 \log (x)+2 e^{2 x} x \log (x)\right )^2} \, dx-18 \int \frac {e^{2 x} x^3 \log ^3(x)}{(-25+2 x \log (x)) \left (-25 e^{2 x}-3 \log (x)+2 e^{2 x} x \log (x)\right )^2} \, dx-\frac {75}{2} \int \frac {e^{2 x} x}{(-25+2 x \log (x)) \left (-25 e^{2 x}-3 \log (x)+2 e^{2 x} x \log (x)\right )} \, dx-75 \int \frac {e^{2 x} x \log (x)}{(-25+2 x \log (x)) \left (-25 e^{2 x}-3 \log (x)+2 e^{2 x} x \log (x)\right )} \, dx-\frac {225}{2} \int \frac {e^{2 x} x \log (x)}{(-25+2 x \log (x)) \left (-25 e^{2 x}-3 \log (x)+2 e^{2 x} x \log (x)\right )^2} \, dx+225 \int \frac {e^{2 x} x^2 \log ^2(x)}{(-25+2 x \log (x)) \left (-25 e^{2 x}-3 \log (x)+2 e^{2 x} x \log (x)\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 1.67, size = 37, normalized size = 1.42 \begin {gather*} \frac {3 e^{2 x} x^2 \log (x)}{2 \left (-25 e^{2 x}+\left (-3+2 e^{2 x} x\right ) \log (x)\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.51, size = 32, normalized size = 1.23 \begin {gather*} \frac {3 \, x^{2} e^{\left (2 \, x\right )} \log \relax (x)}{2 \, {\left ({\left (2 \, x e^{\left (2 \, x\right )} - 3\right )} \log \relax (x) - 25 \, e^{\left (2 \, x\right )}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.29, size = 33, normalized size = 1.27 \begin {gather*} \frac {3 \, x^{2} e^{\left (2 \, x\right )} \log \relax (x)}{2 \, {\left (2 \, x e^{\left (2 \, x\right )} \log \relax (x) - 25 \, e^{\left (2 \, x\right )} - 3 \, \log \relax (x)\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.05, size = 64, normalized size = 2.46
method | result | size |
risch | \(\frac {3 x^{2} {\mathrm e}^{2 x}}{2 \left (2 x \,{\mathrm e}^{2 x}-3\right )}+\frac {75 x^{2} {\mathrm e}^{4 x}}{2 \left (2 x \,{\mathrm e}^{2 x}-3\right ) \left (2 \ln \relax (x ) {\mathrm e}^{2 x} x -25 \,{\mathrm e}^{2 x}-3 \ln \relax (x )\right )}\) | \(64\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.41, size = 30, normalized size = 1.15 \begin {gather*} \frac {3 \, x^{2} e^{\left (2 \, x\right )} \log \relax (x)}{2 \, {\left ({\left (2 \, x \log \relax (x) - 25\right )} e^{\left (2 \, x\right )} - 3 \, \log \relax (x)\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.48, size = 33, normalized size = 1.27 \begin {gather*} -\frac {3\,x^2\,{\mathrm {e}}^{2\,x}\,\ln \relax (x)}{2\,\left (25\,{\mathrm {e}}^{2\,x}+3\,\ln \relax (x)-2\,x\,{\mathrm {e}}^{2\,x}\,\ln \relax (x)\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.50, size = 63, normalized size = 2.42 \begin {gather*} \frac {9 x^{2} \log {\relax (x )}^{2}}{- 12 x \log {\relax (x )}^{2} + \left (8 x^{2} \log {\relax (x )}^{2} - 200 x \log {\relax (x )} + 1250\right ) e^{2 x} + 150 \log {\relax (x )}} + \frac {3 x}{4} + \frac {75 x}{8 x \log {\relax (x )} - 100} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________