Optimal. Leaf size=32 \[ \frac {\log \left (2+e^{x^2 \left (2 x-x^2\right )^2 \log ^2(x)}+\log (4)\right )}{(4+x)^2} \]
________________________________________________________________________________________
Rubi [F] time = 37.92, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{\left (4 x^4-4 x^5+x^6\right ) \log ^2(x)} \left (\left (32 x^3-24 x^4+2 x^6\right ) \log (x)+\left (64 x^3-64 x^4+4 x^5+6 x^6\right ) \log ^2(x)\right )+\left (-4-2 e^{\left (4 x^4-4 x^5+x^6\right ) \log ^2(x)}-2 \log (4)\right ) \log \left (2+e^{\left (4 x^4-4 x^5+x^6\right ) \log ^2(x)}+\log (4)\right )}{128+96 x+24 x^2+2 x^3+e^{\left (4 x^4-4 x^5+x^6\right ) \log ^2(x)} \left (64+48 x+12 x^2+x^3\right )+\left (64+48 x+12 x^2+x^3\right ) \log (4)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {2 e^{(-2+x)^2 x^4 \log ^2(x)} (-2+x)^2 x^3 (4+x) \log (x)+2 e^{(-2+x)^2 x^4 \log ^2(x)} x^3 \left (32-32 x+2 x^2+3 x^3\right ) \log ^2(x)-2 \left (2+e^{(-2+x)^2 x^4 \log ^2(x)}+\log (4)\right ) \log \left (2+e^{(-2+x)^2 x^4 \log ^2(x)}+\log (4)\right )}{(4+x)^3 \left (e^{(-2+x)^2 x^4 \log ^2(x)}+2 (1+\log (2))\right )} \, dx\\ &=\int \left (\frac {2 x^3 \log (x) \left (-32 (1+\log (2))+24 x (1+\log (2))-2 x^3 (1+\log (2))-64 (1+\log (2)) \log (x)+64 x (1+\log (2)) \log (x)-4 x^2 (1+\log (2)) \log (x)-6 x^3 (1+\log (2)) \log (x)\right )}{(4+x)^3 \left (e^{(-2+x)^2 x^4 \log ^2(x)}+2 (1+\log (2))\right )}+\frac {2 \left (16 x^3 \log (x)-12 x^4 \log (x)+x^6 \log (x)+32 x^3 \log ^2(x)-32 x^4 \log ^2(x)+2 x^5 \log ^2(x)+3 x^6 \log ^2(x)-\log \left (2+e^{(-2+x)^2 x^4 \log ^2(x)}+\log (4)\right )\right )}{(4+x)^3}\right ) \, dx\\ &=2 \int \frac {x^3 \log (x) \left (-32 (1+\log (2))+24 x (1+\log (2))-2 x^3 (1+\log (2))-64 (1+\log (2)) \log (x)+64 x (1+\log (2)) \log (x)-4 x^2 (1+\log (2)) \log (x)-6 x^3 (1+\log (2)) \log (x)\right )}{(4+x)^3 \left (e^{(-2+x)^2 x^4 \log ^2(x)}+2 (1+\log (2))\right )} \, dx+2 \int \frac {16 x^3 \log (x)-12 x^4 \log (x)+x^6 \log (x)+32 x^3 \log ^2(x)-32 x^4 \log ^2(x)+2 x^5 \log ^2(x)+3 x^6 \log ^2(x)-\log \left (2+e^{(-2+x)^2 x^4 \log ^2(x)}+\log (4)\right )}{(4+x)^3} \, dx\\ &=2 \int \frac {2 (2-x) x^3 (1+\log (2)) \log (x) (-2+x+(-4+3 x) \log (x))}{(4+x)^2 \left (e^{(-2+x)^2 x^4 \log ^2(x)}+2 (1+\log (2))\right )} \, dx+2 \int \left (\frac {16 x^3 \log (x)}{(4+x)^3}-\frac {12 x^4 \log (x)}{(4+x)^3}+\frac {x^6 \log (x)}{(4+x)^3}+\frac {32 x^3 \log ^2(x)}{(4+x)^3}-\frac {32 x^4 \log ^2(x)}{(4+x)^3}+\frac {2 x^5 \log ^2(x)}{(4+x)^3}+\frac {3 x^6 \log ^2(x)}{(4+x)^3}+\frac {\log \left (e^{(-2+x)^2 x^4 \log ^2(x)}+2 (1+\log (2))\right )}{(-4-x)^3}\right ) \, dx\\ &=2 \int \frac {x^6 \log (x)}{(4+x)^3} \, dx+2 \int \frac {\log \left (e^{(-2+x)^2 x^4 \log ^2(x)}+2 (1+\log (2))\right )}{(-4-x)^3} \, dx+4 \int \frac {x^5 \log ^2(x)}{(4+x)^3} \, dx+6 \int \frac {x^6 \log ^2(x)}{(4+x)^3} \, dx-24 \int \frac {x^4 \log (x)}{(4+x)^3} \, dx+32 \int \frac {x^3 \log (x)}{(4+x)^3} \, dx+64 \int \frac {x^3 \log ^2(x)}{(4+x)^3} \, dx-64 \int \frac {x^4 \log ^2(x)}{(4+x)^3} \, dx+(4 (1+\log (2))) \int \frac {(2-x) x^3 \log (x) (-2+x+(-4+3 x) \log (x))}{(4+x)^2 \left (e^{(-2+x)^2 x^4 \log ^2(x)}+2 (1+\log (2))\right )} \, dx\\ &=2 \int \left (-640 \log (x)+96 x \log (x)-12 x^2 \log (x)+x^3 \log (x)+\frac {4096 \log (x)}{(4+x)^3}-\frac {6144 \log (x)}{(4+x)^2}+\frac {3840 \log (x)}{4+x}\right ) \, dx+2 \int \frac {\log \left (e^{(-2+x)^2 x^4 \log ^2(x)}+2 (1+\log (2))\right )}{(-4-x)^3} \, dx+4 \int \left (96 \log ^2(x)-12 x \log ^2(x)+x^2 \log ^2(x)-\frac {1024 \log ^2(x)}{(4+x)^3}+\frac {1280 \log ^2(x)}{(4+x)^2}-\frac {640 \log ^2(x)}{4+x}\right ) \, dx+6 \int \left (-640 \log ^2(x)+96 x \log ^2(x)-12 x^2 \log ^2(x)+x^3 \log ^2(x)+\frac {4096 \log ^2(x)}{(4+x)^3}-\frac {6144 \log ^2(x)}{(4+x)^2}+\frac {3840 \log ^2(x)}{4+x}\right ) \, dx-24 \int \left (-12 \log (x)+x \log (x)+\frac {256 \log (x)}{(4+x)^3}-\frac {256 \log (x)}{(4+x)^2}+\frac {96 \log (x)}{4+x}\right ) \, dx+32 \int \left (\log (x)-\frac {64 \log (x)}{(4+x)^3}+\frac {48 \log (x)}{(4+x)^2}-\frac {12 \log (x)}{4+x}\right ) \, dx+64 \int \left (\log ^2(x)-\frac {64 \log ^2(x)}{(4+x)^3}+\frac {48 \log ^2(x)}{(4+x)^2}-\frac {12 \log ^2(x)}{4+x}\right ) \, dx-64 \int \left (-12 \log ^2(x)+x \log ^2(x)+\frac {256 \log ^2(x)}{(4+x)^3}-\frac {256 \log ^2(x)}{(4+x)^2}+\frac {96 \log ^2(x)}{4+x}\right ) \, dx+(4 (1+\log (2))) \int \left (\frac {64 \log (x) (2-x+4 \log (x)-3 x \log (x))}{e^{(-2+x)^2 x^4 \log ^2(x)}+2 (1+\log (2))}+\frac {x^2 \log (x) (2-x+4 \log (x)-3 x \log (x))}{e^{(-2+x)^2 x^4 \log ^2(x)}+2 (1+\log (2))}+\frac {384 \log (x) (2-x+4 \log (x)-3 x \log (x))}{(4+x)^2 \left (e^{(-2+x)^2 x^4 \log ^2(x)}+2 (1+\log (2))\right )}+\frac {10 x \log (x) (-2+x-4 \log (x)+3 x \log (x))}{e^{(-2+x)^2 x^4 \log ^2(x)}+2 (1+\log (2))}+\frac {352 \log (x) (-2+x-4 \log (x)+3 x \log (x))}{(4+x) \left (e^{(-2+x)^2 x^4 \log ^2(x)}+2 (1+\log (2))\right )}\right ) \, dx\\ &=\text {Rest of rules removed due to large latex content} \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.26, size = 26, normalized size = 0.81 \begin {gather*} \frac {\log \left (2+e^{(-2+x)^2 x^4 \log ^2(x)}+\log (4)\right )}{(4+x)^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.49, size = 38, normalized size = 1.19 \begin {gather*} \frac {\log \left (e^{\left ({\left (x^{6} - 4 \, x^{5} + 4 \, x^{4}\right )} \log \relax (x)^{2}\right )} + 2 \, \log \relax (2) + 2\right )}{x^{2} + 8 \, x + 16} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 3.00, size = 46, normalized size = 1.44 \begin {gather*} \frac {\log \left (e^{\left (x^{6} \log \relax (x)^{2} - 4 \, x^{5} \log \relax (x)^{2} + 4 \, x^{4} \log \relax (x)^{2}\right )} + 2 \, \log \relax (2) + 2\right )}{x^{2} + 8 \, x + 16} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.05, size = 33, normalized size = 1.03
method | result | size |
risch | \(\frac {\ln \left ({\mathrm e}^{x^{4} \left (x -2\right )^{2} \ln \relax (x )^{2}}+2+2 \ln \relax (2)\right )}{x^{2}+8 x +16}\) | \(33\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.63, size = 61, normalized size = 1.91 \begin {gather*} \frac {\log \left (2 \, {\left (\log \relax (2) + 1\right )} e^{\left (4 \, x^{5} \log \relax (x)^{2}\right )} + e^{\left (x^{6} \log \relax (x)^{2} + 4 \, x^{4} \log \relax (x)^{2}\right )}\right ) - 4 \, \log \left (e^{\left (x^{5} \log \relax (x)^{2}\right )}\right )}{x^{2} + 8 \, x + 16} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.03 \begin {gather*} \int \frac {{\mathrm {e}}^{{\ln \relax (x)}^2\,\left (x^6-4\,x^5+4\,x^4\right )}\,\left (\left (6\,x^6+4\,x^5-64\,x^4+64\,x^3\right )\,{\ln \relax (x)}^2+\left (2\,x^6-24\,x^4+32\,x^3\right )\,\ln \relax (x)\right )-\ln \left (2\,\ln \relax (2)+{\mathrm {e}}^{{\ln \relax (x)}^2\,\left (x^6-4\,x^5+4\,x^4\right )}+2\right )\,\left (4\,\ln \relax (2)+2\,{\mathrm {e}}^{{\ln \relax (x)}^2\,\left (x^6-4\,x^5+4\,x^4\right )}+4\right )}{96\,x+2\,\ln \relax (2)\,\left (x^3+12\,x^2+48\,x+64\right )+{\mathrm {e}}^{{\ln \relax (x)}^2\,\left (x^6-4\,x^5+4\,x^4\right )}\,\left (x^3+12\,x^2+48\,x+64\right )+24\,x^2+2\,x^3+128} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 20.09, size = 36, normalized size = 1.12 \begin {gather*} \frac {\log {\left (e^{\left (x^{6} - 4 x^{5} + 4 x^{4}\right ) \log {\relax (x )}^{2}} + 2 \log {\relax (2 )} + 2 \right )}}{x^{2} + 8 x + 16} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________