Optimal. Leaf size=22 \[ 5 \left (x-e^x \left (2-e^{-x^2}\right ) \log (x)\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.14, antiderivative size = 44, normalized size of antiderivative = 2.00, number of steps used = 6, number of rules used = 2, integrand size = 50, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.040, Rules used = {14, 2288} \begin {gather*} \frac {5 e^{x-x^2} \left (x \log (x)-2 x^2 \log (x)\right )}{(1-2 x) x}+5 x-10 e^x \log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 14
Rule 2288
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (-\frac {5 \left (2 e^x-x+2 e^x x \log (x)\right )}{x}-\frac {5 e^{x-x^2} \left (-1-x \log (x)+2 x^2 \log (x)\right )}{x}\right ) \, dx\\ &=-\left (5 \int \frac {2 e^x-x+2 e^x x \log (x)}{x} \, dx\right )-5 \int \frac {e^{x-x^2} \left (-1-x \log (x)+2 x^2 \log (x)\right )}{x} \, dx\\ &=\frac {5 e^{x-x^2} \left (x \log (x)-2 x^2 \log (x)\right )}{(1-2 x) x}-5 \int \left (-1+\frac {2 e^x (1+x \log (x))}{x}\right ) \, dx\\ &=5 x+\frac {5 e^{x-x^2} \left (x \log (x)-2 x^2 \log (x)\right )}{(1-2 x) x}-10 \int \frac {e^x (1+x \log (x))}{x} \, dx\\ &=5 x-10 e^x \log (x)+\frac {5 e^{x-x^2} \left (x \log (x)-2 x^2 \log (x)\right )}{(1-2 x) x}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.33, size = 19, normalized size = 0.86 \begin {gather*} 5 \left (x+e^x \left (-2+e^{-x^2}\right ) \log (x)\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.49, size = 18, normalized size = 0.82 \begin {gather*} 5 \, {\left (e^{\left (-x^{2}\right )} - 2\right )} e^{x} \log \relax (x) + 5 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.14, size = 22, normalized size = 1.00 \begin {gather*} 5 \, e^{\left (-x^{2} + x\right )} \log \relax (x) - 10 \, e^{x} \log \relax (x) + 5 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 22, normalized size = 1.00
method | result | size |
risch | \(\left (5 \,{\mathrm e}^{-x \left (x -1\right )}-10 \,{\mathrm e}^{x}\right ) \ln \relax (x )+5 x\) | \(22\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} 5 \, e^{\left (-x^{2} + x\right )} \log \relax (x) - 10 \, e^{x} \log \relax (x) + 5 \, x - 10 \, {\rm Ei}\relax (x) + 10 \, \int \frac {e^{x}}{x}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.05 \begin {gather*} \int \frac {5\,x+{\mathrm {e}}^x\,\left (5\,{\mathrm {e}}^{-x^2}-10\right )-{\mathrm {e}}^x\,\ln \relax (x)\,\left (10\,x-{\mathrm {e}}^{-x^2}\,\left (5\,x-10\,x^2\right )\right )}{x} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 12.58, size = 24, normalized size = 1.09 \begin {gather*} 5 x - 10 e^{x} \log {\relax (x )} + 5 e^{x} e^{- x^{2}} \log {\relax (x )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________