Optimal. Leaf size=21 \[ \frac {5}{-3+e^x+\log \left (\left (3+x+\log \left (20 x^2\right )\right )^2\right )} \]
________________________________________________________________________________________
Rubi [A] time = 0.60, antiderivative size = 25, normalized size of antiderivative = 1.19, number of steps used = 3, number of rules used = 3, integrand size = 208, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.014, Rules used = {6688, 12, 6686} \begin {gather*} -\frac {5}{-\log \left (\left (\log \left (20 x^2\right )+x+3\right )^2\right )-e^x+3} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 6686
Rule 6688
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {5 \left (-4-\left (2+3 e^x\right ) x-e^x x^2-e^x x \log \left (20 x^2\right )\right )}{x \left (3+x+\log \left (20 x^2\right )\right ) \left (3-e^x-\log \left (\left (3+x+\log \left (20 x^2\right )\right )^2\right )\right )^2} \, dx\\ &=5 \int \frac {-4-\left (2+3 e^x\right ) x-e^x x^2-e^x x \log \left (20 x^2\right )}{x \left (3+x+\log \left (20 x^2\right )\right ) \left (3-e^x-\log \left (\left (3+x+\log \left (20 x^2\right )\right )^2\right )\right )^2} \, dx\\ &=-\frac {5}{3-e^x-\log \left (\left (3+x+\log \left (20 x^2\right )\right )^2\right )}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.08, size = 21, normalized size = 1.00 \begin {gather*} \frac {5}{-3+e^x+\log \left (\left (3+x+\log \left (20 x^2\right )\right )^2\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.76, size = 36, normalized size = 1.71 \begin {gather*} \frac {5}{e^{x} + \log \left (x^{2} + 2 \, {\left (x + 3\right )} \log \left (20 \, x^{2}\right ) + \log \left (20 \, x^{2}\right )^{2} + 6 \, x + 9\right ) - 3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 1.85, size = 42, normalized size = 2.00 \begin {gather*} \frac {5}{e^{x} + \log \left (x^{2} + 2 \, x \log \left (20 \, x^{2}\right ) + \log \left (20 \, x^{2}\right )^{2} + 6 \, x + 6 \, \log \left (20 \, x^{2}\right ) + 9\right ) - 3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.88, size = 509, normalized size = 24.24
method | result | size |
risch | \(\frac {10 i}{2 \pi \mathrm {csgn}\left (i \left (\pi \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )-2 \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}+\pi \mathrm {csgn}\left (i x^{2}\right )^{3}+2 i \ln \left (20\right )+2 i x +4 i \ln \relax (x )+6 i\right )^{2}\right )^{2}+\pi \mathrm {csgn}\left (i \left (\pi \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )-2 \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}+\pi \mathrm {csgn}\left (i x^{2}\right )^{3}+2 i \ln \left (20\right )+2 i x +4 i \ln \relax (x )+6 i\right )\right )^{2} \mathrm {csgn}\left (i \left (\pi \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )-2 \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}+\pi \mathrm {csgn}\left (i x^{2}\right )^{3}+2 i \ln \left (20\right )+2 i x +4 i \ln \relax (x )+6 i\right )^{2}\right )-2 \pi \,\mathrm {csgn}\left (i \left (\pi \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )-2 \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}+\pi \mathrm {csgn}\left (i x^{2}\right )^{3}+2 i \ln \left (20\right )+2 i x +4 i \ln \relax (x )+6 i\right )\right ) \mathrm {csgn}\left (i \left (\pi \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )-2 \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}+\pi \mathrm {csgn}\left (i x^{2}\right )^{3}+2 i \ln \left (20\right )+2 i x +4 i \ln \relax (x )+6 i\right )^{2}\right )^{2}-\pi \mathrm {csgn}\left (i \left (\pi \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )-2 \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}+\pi \mathrm {csgn}\left (i x^{2}\right )^{3}+2 i \ln \left (20\right )+2 i x +4 i \ln \relax (x )+6 i\right )^{2}\right )^{3}-2 \pi -4 i \ln \relax (2)+2 i {\mathrm e}^{x}+4 i \ln \left (\pi \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )-2 \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}+\pi \mathrm {csgn}\left (i x^{2}\right )^{3}+2 i \left (2 \ln \relax (2)+\ln \relax (5)\right )+2 i x +4 i \ln \relax (x )+6 i\right )-6 i}\) | \(509\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.55, size = 24, normalized size = 1.14 \begin {gather*} \frac {5}{e^{x} + 2 \, \log \left (x + \log \relax (5) + 2 \, \log \relax (2) + 2 \, \log \relax (x) + 3\right ) - 3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.38, size = 37, normalized size = 1.76 \begin {gather*} \frac {5}{\ln \left (6\,x+{\ln \left (20\,x^2\right )}^2+\ln \left (20\,x^2\right )\,\left (2\,x+6\right )+x^2+9\right )+{\mathrm {e}}^x-3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.60, size = 36, normalized size = 1.71 \begin {gather*} \frac {5}{e^{x} + \log {\left (x^{2} + 6 x + \left (2 x + 6\right ) \log {\left (20 x^{2} \right )} + \log {\left (20 x^{2} \right )}^{2} + 9 \right )} - 3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________