Optimal. Leaf size=22 \[ \frac {9 x \left (5+\frac {8+x}{3 e}\right )}{-1+x^3} \]
________________________________________________________________________________________
Rubi [A] time = 0.03, antiderivative size = 21, normalized size of antiderivative = 0.95, number of steps used = 4, number of rules used = 4, integrand size = 40, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.100, Rules used = {12, 28, 1858, 8} \begin {gather*} -\frac {3 x (x+15 e+8)}{e \left (1-x^3\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 8
Rule 12
Rule 28
Rule 1858
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {\int \frac {-24-6 x-48 x^3-3 x^4+e \left (-45-90 x^3\right )}{1-2 x^3+x^6} \, dx}{e}\\ &=\frac {\int \frac {-24-6 x-48 x^3-3 x^4+e \left (-45-90 x^3\right )}{\left (-1+x^3\right )^2} \, dx}{e}\\ &=-\frac {3 x (8+15 e+x)}{e \left (1-x^3\right )}+\frac {\int 0 \, dx}{3 e}\\ &=-\frac {3 x (8+15 e+x)}{e \left (1-x^3\right )}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.01, size = 19, normalized size = 0.86 \begin {gather*} \frac {3 x (8+15 e+x)}{e \left (-1+x^3\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.51, size = 23, normalized size = 1.05 \begin {gather*} \frac {3 \, {\left (x^{2} + 15 \, x e + 8 \, x\right )} e^{\left (-1\right )}}{x^{3} - 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.13, size = 23, normalized size = 1.05 \begin {gather*} \frac {3 \, {\left (x^{2} + 15 \, x e + 8 \, x\right )} e^{\left (-1\right )}}{x^{3} - 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.07, size = 22, normalized size = 1.00
method | result | size |
gosper | \(\frac {3 x \left (x +15 \,{\mathrm e}+8\right ) {\mathrm e}^{-1}}{x^{3}-1}\) | \(22\) |
risch | \(\frac {{\mathrm e}^{-1} \left (3 x^{2}+\left (24+45 \,{\mathrm e}\right ) x \right )}{x^{3}-1}\) | \(25\) |
norman | \(\frac {3 x^{2} {\mathrm e}^{-1}+3 \left (15 \,{\mathrm e}+8\right ) {\mathrm e}^{-1} x}{x^{3}-1}\) | \(32\) |
default | \({\mathrm e}^{-1} \left (-\frac {3 \left (-5 \,{\mathrm e}-3\right )}{x -1}+\frac {3 \left (-2-5 \,{\mathrm e}\right ) x +15 \,{\mathrm e}+9}{x^{2}+x +1}\right )\) | \(44\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.37, size = 23, normalized size = 1.05 \begin {gather*} \frac {3 \, {\left (x^{2} + x {\left (15 \, e + 8\right )}\right )} e^{\left (-1\right )}}{x^{3} - 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.10, size = 28, normalized size = 1.27 \begin {gather*} -\frac {3\,x^2+\left (45\,\mathrm {e}+24\right )\,x}{\mathrm {e}-x^3\,\mathrm {e}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.84, size = 26, normalized size = 1.18 \begin {gather*} - \frac {- 3 x^{2} + x \left (- 45 e - 24\right )}{e x^{3} - e} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________