Optimal. Leaf size=32 \[ e^{e^x \left (-x+3 e^{\frac {4}{5 \left (2-\frac {5}{x}\right ) \log (x)}} x\right )} \]
________________________________________________________________________________________
Rubi [F] time = 79.39, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\exp \left (-e^x x+3 e^{x+\frac {4 x}{(-25+10 x) \log (x)}} x\right ) \left (e^x \left (-125-25 x+80 x^2-20 x^3\right ) \log ^2(x)+e^{\frac {4 x}{(-25+10 x) \log (x)}} \left (e^x \left (60 x-24 x^2\right )-60 e^x x \log (x)+e^x \left (375+75 x-240 x^2+60 x^3\right ) \log ^2(x)\right )\right )}{\left (125-100 x+20 x^2\right ) \log ^2(x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {\exp \left (-e^x x+3 e^{x+\frac {4 x}{(-25+10 x) \log (x)}} x\right ) \left (e^x \left (-125-25 x+80 x^2-20 x^3\right ) \log ^2(x)+e^{\frac {4 x}{(-25+10 x) \log (x)}} \left (e^x \left (60 x-24 x^2\right )-60 e^x x \log (x)+e^x \left (375+75 x-240 x^2+60 x^3\right ) \log ^2(x)\right )\right )}{5 (-5+2 x)^2 \log ^2(x)} \, dx\\ &=\frac {1}{5} \int \frac {\exp \left (-e^x x+3 e^{x+\frac {4 x}{(-25+10 x) \log (x)}} x\right ) \left (e^x \left (-125-25 x+80 x^2-20 x^3\right ) \log ^2(x)+e^{\frac {4 x}{(-25+10 x) \log (x)}} \left (e^x \left (60 x-24 x^2\right )-60 e^x x \log (x)+e^x \left (375+75 x-240 x^2+60 x^3\right ) \log ^2(x)\right )\right )}{(-5+2 x)^2 \log ^2(x)} \, dx\\ &=\frac {1}{5} \int \frac {\exp \left (e^x \left (-1+3 e^{\frac {4 x}{5 (-5+2 x) \log (x)}}\right ) x\right ) \left (e^x \left (-125-25 x+80 x^2-20 x^3\right ) \log ^2(x)+e^{\frac {4 x}{(-25+10 x) \log (x)}} \left (e^x \left (60 x-24 x^2\right )-60 e^x x \log (x)+e^x \left (375+75 x-240 x^2+60 x^3\right ) \log ^2(x)\right )\right )}{(5-2 x)^2 \log ^2(x)} \, dx\\ &=\frac {1}{5} \int \left (-5 \exp \left (x+e^x \left (-1+3 e^{\frac {4 x}{5 (-5+2 x) \log (x)}}\right ) x\right ) (1+x)+\frac {3 \exp \left (x+e^x \left (-1+3 e^{\frac {4 x}{5 (-5+2 x) \log (x)}}\right ) x+\frac {4 x}{5 (-5+2 x) \log (x)}\right ) \left (20 x-8 x^2-20 x \log (x)+125 \log ^2(x)+25 x \log ^2(x)-80 x^2 \log ^2(x)+20 x^3 \log ^2(x)\right )}{(-5+2 x)^2 \log ^2(x)}\right ) \, dx\\ &=\frac {3}{5} \int \frac {\exp \left (x+e^x \left (-1+3 e^{\frac {4 x}{5 (-5+2 x) \log (x)}}\right ) x+\frac {4 x}{5 (-5+2 x) \log (x)}\right ) \left (20 x-8 x^2-20 x \log (x)+125 \log ^2(x)+25 x \log ^2(x)-80 x^2 \log ^2(x)+20 x^3 \log ^2(x)\right )}{(-5+2 x)^2 \log ^2(x)} \, dx-\int \exp \left (x+e^x \left (-1+3 e^{\frac {4 x}{5 (-5+2 x) \log (x)}}\right ) x\right ) (1+x) \, dx\\ &=\frac {3}{5} \int \frac {\exp \left (x+e^x \left (-1+3 e^{\frac {4 x}{5 (-5+2 x) \log (x)}}\right ) x+\frac {4 x}{5 (-5+2 x) \log (x)}\right ) \left (4 (5-2 x) x-20 x \log (x)+5 (5-2 x)^2 (1+x) \log ^2(x)\right )}{(5-2 x)^2 \log ^2(x)} \, dx-\int \left (\exp \left (x+e^x \left (-1+3 e^{\frac {4 x}{5 (-5+2 x) \log (x)}}\right ) x\right )+\exp \left (x+e^x \left (-1+3 e^{\frac {4 x}{5 (-5+2 x) \log (x)}}\right ) x\right ) x\right ) \, dx\\ &=\frac {3}{5} \int \left (5 \exp \left (x+e^x \left (-1+3 e^{\frac {4 x}{5 (-5+2 x) \log (x)}}\right ) x+\frac {4 x}{5 (-5+2 x) \log (x)}\right ) (1+x)-\frac {4 \exp \left (x+e^x \left (-1+3 e^{\frac {4 x}{5 (-5+2 x) \log (x)}}\right ) x+\frac {4 x}{5 (-5+2 x) \log (x)}\right ) x}{(-5+2 x) \log ^2(x)}-\frac {20 \exp \left (x+e^x \left (-1+3 e^{\frac {4 x}{5 (-5+2 x) \log (x)}}\right ) x+\frac {4 x}{5 (-5+2 x) \log (x)}\right ) x}{(-5+2 x)^2 \log (x)}\right ) \, dx-\int \exp \left (x+e^x \left (-1+3 e^{\frac {4 x}{5 (-5+2 x) \log (x)}}\right ) x\right ) \, dx-\int \exp \left (x+e^x \left (-1+3 e^{\frac {4 x}{5 (-5+2 x) \log (x)}}\right ) x\right ) x \, dx\\ &=-\left (\frac {12}{5} \int \frac {\exp \left (x+e^x \left (-1+3 e^{\frac {4 x}{5 (-5+2 x) \log (x)}}\right ) x+\frac {4 x}{5 (-5+2 x) \log (x)}\right ) x}{(-5+2 x) \log ^2(x)} \, dx\right )+3 \int \exp \left (x+e^x \left (-1+3 e^{\frac {4 x}{5 (-5+2 x) \log (x)}}\right ) x+\frac {4 x}{5 (-5+2 x) \log (x)}\right ) (1+x) \, dx-12 \int \frac {\exp \left (x+e^x \left (-1+3 e^{\frac {4 x}{5 (-5+2 x) \log (x)}}\right ) x+\frac {4 x}{5 (-5+2 x) \log (x)}\right ) x}{(-5+2 x)^2 \log (x)} \, dx-\int \exp \left (x+e^x \left (-1+3 e^{\frac {4 x}{5 (-5+2 x) \log (x)}}\right ) x\right ) \, dx-\int \exp \left (x+e^x \left (-1+3 e^{\frac {4 x}{5 (-5+2 x) \log (x)}}\right ) x\right ) x \, dx\\ &=-\left (\frac {12}{5} \int \left (\frac {\exp \left (x+e^x \left (-1+3 e^{\frac {4 x}{5 (-5+2 x) \log (x)}}\right ) x+\frac {4 x}{5 (-5+2 x) \log (x)}\right )}{2 \log ^2(x)}+\frac {5 \exp \left (x+e^x \left (-1+3 e^{\frac {4 x}{5 (-5+2 x) \log (x)}}\right ) x+\frac {4 x}{5 (-5+2 x) \log (x)}\right )}{2 (-5+2 x) \log ^2(x)}\right ) \, dx\right )+3 \int \left (\exp \left (x+e^x \left (-1+3 e^{\frac {4 x}{5 (-5+2 x) \log (x)}}\right ) x+\frac {4 x}{5 (-5+2 x) \log (x)}\right )+\exp \left (x+e^x \left (-1+3 e^{\frac {4 x}{5 (-5+2 x) \log (x)}}\right ) x+\frac {4 x}{5 (-5+2 x) \log (x)}\right ) x\right ) \, dx-12 \int \left (\frac {5 \exp \left (x+e^x \left (-1+3 e^{\frac {4 x}{5 (-5+2 x) \log (x)}}\right ) x+\frac {4 x}{5 (-5+2 x) \log (x)}\right )}{2 (-5+2 x)^2 \log (x)}+\frac {\exp \left (x+e^x \left (-1+3 e^{\frac {4 x}{5 (-5+2 x) \log (x)}}\right ) x+\frac {4 x}{5 (-5+2 x) \log (x)}\right )}{2 (-5+2 x) \log (x)}\right ) \, dx-\int \exp \left (x+e^x \left (-1+3 e^{\frac {4 x}{5 (-5+2 x) \log (x)}}\right ) x\right ) \, dx-\int \exp \left (x+e^x \left (-1+3 e^{\frac {4 x}{5 (-5+2 x) \log (x)}}\right ) x\right ) x \, dx\\ &=-\left (\frac {6}{5} \int \frac {\exp \left (x+e^x \left (-1+3 e^{\frac {4 x}{5 (-5+2 x) \log (x)}}\right ) x+\frac {4 x}{5 (-5+2 x) \log (x)}\right )}{\log ^2(x)} \, dx\right )+3 \int \exp \left (x+e^x \left (-1+3 e^{\frac {4 x}{5 (-5+2 x) \log (x)}}\right ) x+\frac {4 x}{5 (-5+2 x) \log (x)}\right ) \, dx+3 \int \exp \left (x+e^x \left (-1+3 e^{\frac {4 x}{5 (-5+2 x) \log (x)}}\right ) x+\frac {4 x}{5 (-5+2 x) \log (x)}\right ) x \, dx-6 \int \frac {\exp \left (x+e^x \left (-1+3 e^{\frac {4 x}{5 (-5+2 x) \log (x)}}\right ) x+\frac {4 x}{5 (-5+2 x) \log (x)}\right )}{(-5+2 x) \log ^2(x)} \, dx-6 \int \frac {\exp \left (x+e^x \left (-1+3 e^{\frac {4 x}{5 (-5+2 x) \log (x)}}\right ) x+\frac {4 x}{5 (-5+2 x) \log (x)}\right )}{(-5+2 x) \log (x)} \, dx-30 \int \frac {\exp \left (x+e^x \left (-1+3 e^{\frac {4 x}{5 (-5+2 x) \log (x)}}\right ) x+\frac {4 x}{5 (-5+2 x) \log (x)}\right )}{(-5+2 x)^2 \log (x)} \, dx-\int \exp \left (x+e^x \left (-1+3 e^{\frac {4 x}{5 (-5+2 x) \log (x)}}\right ) x\right ) \, dx-\int \exp \left (x+e^x \left (-1+3 e^{\frac {4 x}{5 (-5+2 x) \log (x)}}\right ) x\right ) x \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.42, size = 29, normalized size = 0.91 \begin {gather*} e^{e^x \left (-1+3 e^{\frac {4 x}{5 (-5+2 x) \log (x)}}\right ) x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.67, size = 41, normalized size = 1.28 \begin {gather*} e^{\left (-x e^{x} + 3 \, x e^{\left (\frac {5 \, {\left (2 \, x^{2} - 5 \, x\right )} \log \relax (x) + 4 \, x}{5 \, {\left (2 \, x - 5\right )} \log \relax (x)}\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \mathit {undef} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.16, size = 36, normalized size = 1.12
method | result | size |
risch | \({\mathrm e}^{-x \left ({\mathrm e}^{x}-3 \,{\mathrm e}^{\frac {x \left (10 x \ln \relax (x )-25 \ln \relax (x )+4\right )}{5 \left (2 x -5\right ) \ln \relax (x )}}\right )}\) | \(36\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} e^{\left (3 \, x e^{\left (x + \frac {2}{5 \, \log \relax (x)} + \frac {2}{{\left (2 \, x - 5\right )} \log \relax (x)}\right )} - x e^{x}\right )} - \frac {1}{5} \, \int 0\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.39, size = 29, normalized size = 0.91 \begin {gather*} {\mathrm {e}}^{3\,x\,{\mathrm {e}}^x\,{\mathrm {e}}^{-\frac {4\,x}{25\,\ln \relax (x)-10\,x\,\ln \relax (x)}}}\,{\mathrm {e}}^{-x\,{\mathrm {e}}^x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 63.09, size = 26, normalized size = 0.81 \begin {gather*} e^{3 x e^{x} e^{\frac {4 x}{\left (10 x - 25\right ) \log {\relax (x )}}} - x e^{x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________