Optimal. Leaf size=18 \[ 4+e^x+x+\frac {x}{-1+x+(1+x)^4} \]
________________________________________________________________________________________
Rubi [F] time = 180.01, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \text {\$Aborted} \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
Aborted
________________________________________________________________________________________
Mathematica [A] time = 0.44, size = 20, normalized size = 1.11 \begin {gather*} e^x+x+\frac {1}{5+6 x+4 x^2+x^3} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.53, size = 50, normalized size = 2.78 \begin {gather*} \frac {x^{4} + 4 \, x^{3} + 6 \, x^{2} + {\left (x^{3} + 4 \, x^{2} + 6 \, x + 5\right )} e^{x} + 5 \, x + 1}{x^{3} + 4 \, x^{2} + 6 \, x + 5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.22, size = 56, normalized size = 3.11 \begin {gather*} \frac {x^{4} + x^{3} e^{x} + 4 \, x^{3} + 4 \, x^{2} e^{x} + 6 \, x^{2} + 6 \, x e^{x} + 5 \, x + 5 \, e^{x} + 1}{x^{3} + 4 \, x^{2} + 6 \, x + 5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.12, size = 20, normalized size = 1.11
method | result | size |
risch | \(x +\frac {1}{x^{3}+4 x^{2}+6 x +5}+{\mathrm e}^{x}\) | \(20\) |
norman | \(\frac {x^{4}-19 x -10 x^{2}+{\mathrm e}^{x} x^{3}+6 \,{\mathrm e}^{x} x +4 \,{\mathrm e}^{x} x^{2}+5 \,{\mathrm e}^{x}-19}{x^{3}+4 x^{2}+6 x +5}\) | \(52\) |
default | \(x +{\mathrm e}^{x}-\frac {\frac {936}{83} x^{2}+\frac {1403}{83} x +\frac {1840}{83}}{x^{3}+4 x^{2}+6 x +5}-\frac {\left (\munderset {\textit {\_R1} =\RootOf \left (\textit {\_Z}^{3}+4 \textit {\_Z}^{2}+6 \textit {\_Z} +5\right )}{\sum }\frac {\left (272 \textit {\_R1}^{2}+799 \textit {\_R1} +620\right ) {\mathrm e}^{\textit {\_R1}} \expIntegralEi \left (1, \textit {\_R1} -x \right )}{3 \textit {\_R1}^{2}+8 \textit {\_R1} +6}\right )}{83}+\frac {60 \left (\munderset {\textit {\_R1} =\RootOf \left (\textit {\_Z}^{3}+4 \textit {\_Z}^{2}+6 \textit {\_Z} +5\right )}{\sum }\frac {\left (21 \textit {\_R1}^{2}+15 \textit {\_R1} +32\right ) {\mathrm e}^{\textit {\_R1}} \expIntegralEi \left (1, \textit {\_R1} -x \right )}{3 \textit {\_R1}^{2}+8 \textit {\_R1} +6}\right )}{83}-\frac {28 \left (\munderset {\textit {\_R1} =\RootOf \left (\textit {\_Z}^{3}+4 \textit {\_Z}^{2}+6 \textit {\_Z} +5\right )}{\sum }\frac {\left (161 \textit {\_R1}^{2}+198 \textit {\_R1} +190\right ) {\mathrm e}^{\textit {\_R1}} \expIntegralEi \left (1, \textit {\_R1} -x \right )}{3 \textit {\_R1}^{2}+8 \textit {\_R1} +6}\right )}{83}-\frac {76 \left (\munderset {\textit {\_R1} =\RootOf \left (\textit {\_Z}^{3}+4 \textit {\_Z}^{2}+6 \textit {\_Z} +5\right )}{\sum }\frac {\left (48 \textit {\_R1}^{2}+58 \textit {\_R1} +85\right ) {\mathrm e}^{\textit {\_R1}} \expIntegralEi \left (1, \textit {\_R1} -x \right )}{3 \textit {\_R1}^{2}+8 \textit {\_R1} +6}\right )}{83}+\frac {40 \left (\munderset {\textit {\_R1} =\RootOf \left (\textit {\_Z}^{3}+4 \textit {\_Z}^{2}+6 \textit {\_Z} +5\right )}{\sum }\frac {\left (57 \textit {\_R1}^{2}+100 \textit {\_R1} +75\right ) {\mathrm e}^{\textit {\_R1}} \expIntegralEi \left (1, \textit {\_R1} -x \right )}{3 \textit {\_R1}^{2}+8 \textit {\_R1} +6}\right )}{83}+\frac {58 \left (\munderset {\textit {\_R1} =\RootOf \left (\textit {\_Z}^{3}+4 \textit {\_Z}^{2}+6 \textit {\_Z} +5\right )}{\sum }\frac {\left (86 \textit {\_R1}^{2}+97 \textit {\_R1} +135\right ) {\mathrm e}^{\textit {\_R1}} \expIntegralEi \left (1, \textit {\_R1} -x \right )}{3 \textit {\_R1}^{2}+8 \textit {\_R1} +6}\right )}{83}+\frac {168 \left (\munderset {\textit {\_R} =\RootOf \left (\textit {\_Z}^{3}+4 \textit {\_Z}^{2}+6 \textit {\_Z} +5\right )}{\sum }\frac {\left (-13 \textit {\_R} -40\right ) \ln \left (x -\textit {\_R} \right )}{3 \textit {\_R}^{2}+8 \textit {\_R} +6}\right )}{83}-\frac {25 \left (\munderset {\textit {\_R1} =\RootOf \left (\textit {\_Z}^{3}+4 \textit {\_Z}^{2}+6 \textit {\_Z} +5\right )}{\sum }\frac {\left (4 \textit {\_R1}^{2}-9 \textit {\_R1} +14\right ) {\mathrm e}^{\textit {\_R1}} \expIntegralEi \left (1, \textit {\_R1} -x \right )}{3 \textit {\_R1}^{2}+8 \textit {\_R1} +6}\right )}{83}+\frac {58 \left (\munderset {\textit {\_R} =\RootOf \left (\textit {\_Z}^{3}+4 \textit {\_Z}^{2}+6 \textit {\_Z} +5\right )}{\sum }\frac {\left (86 \textit {\_R} +105\right ) \ln \left (x -\textit {\_R} \right )}{3 \textit {\_R}^{2}+8 \textit {\_R} +6}\right )}{83}+\frac {292 \left (\munderset {\textit {\_R} =\RootOf \left (\textit {\_Z}^{3}+4 \textit {\_Z}^{2}+6 \textit {\_Z} +5\right )}{\sum }\frac {\left (-12 \textit {\_R} -5\right ) \ln \left (x -\textit {\_R} \right )}{3 \textit {\_R}^{2}+8 \textit {\_R} +6}\right )}{83}-\frac {4 \left (\munderset {\textit {\_R} =\RootOf \left (\textit {\_Z}^{3}+4 \textit {\_Z}^{2}+6 \textit {\_Z} +5\right )}{\sum }\frac {\left (166 \textit {\_R}^{2}+151 \textit {\_R} +305\right ) \ln \left (x -\textit {\_R} \right )}{3 \textit {\_R}^{2}+8 \textit {\_R} +6}\right )}{83}+\frac {38 \left (\munderset {\textit {\_R} =\RootOf \left (\textit {\_Z}^{3}+4 \textit {\_Z}^{2}+6 \textit {\_Z} +5\right )}{\sum }\frac {\left (-2 \textit {\_R} +13\right ) \ln \left (x -\textit {\_R} \right )}{3 \textit {\_R}^{2}+8 \textit {\_R} +6}\right )}{83}+\frac {156 \left (\munderset {\textit {\_R} =\RootOf \left (\textit {\_Z}^{3}+4 \textit {\_Z}^{2}+6 \textit {\_Z} +5\right )}{\sum }\frac {\left (7 \textit {\_R} -4\right ) \ln \left (x -\textit {\_R} \right )}{3 \textit {\_R}^{2}+8 \textit {\_R} +6}\right )}{83}+\frac {8 \left (\munderset {\textit {\_R} =\RootOf \left (\textit {\_Z}^{3}+4 \textit {\_Z}^{2}+6 \textit {\_Z} +5\right )}{\sum }\frac {\left (83 \textit {\_R}^{2}+36 \textit {\_R} +430\right ) \ln \left (x -\textit {\_R} \right )}{3 \textit {\_R}^{2}+8 \textit {\_R} +6}\right )}{83}-\frac {76 \,{\mathrm e}^{x} \left (48 x^{2}+106 x +105\right )}{83 \left (x^{3}+4 x^{2}+6 x +5\right )}-\frac {25 \,{\mathrm e}^{x} \left (4 x^{2}-5 x -12\right )}{83 \left (x^{3}+4 x^{2}+6 x +5\right )}+\frac {-\frac {76}{83} x^{2}+\frac {95}{83} x +\frac {228}{83}}{x^{3}+4 x^{2}+6 x +5}+\frac {\frac {2944}{83} x^{2}+\frac {4288}{83} x +\frac {6440}{83}}{x^{3}+4 x^{2}+6 x +5}+\frac {\frac {1092}{83} x^{2}+\frac {1872}{83} x +\frac {1040}{83}}{x^{3}+4 x^{2}+6 x +5}+\frac {58 \,{\mathrm e}^{x} \left (86 x^{2}+183 x +240\right )}{83 \left (x^{3}+4 x^{2}+6 x +5\right )}+\frac {8 \,{\mathrm e}^{x} \left (368 x^{2}+536 x +805\right )}{83 \left (x^{3}+4 x^{2}+6 x +5\right )}-\frac {{\mathrm e}^{x} \left (936 x^{2}+1403 x +1840\right )}{83 \left (x^{3}+4 x^{2}+6 x +5\right )}-\frac {28 \,{\mathrm e}^{x} \left (161 x^{2}+276 x +430\right )}{83 \left (x^{3}+4 x^{2}+6 x +5\right )}+\frac {60 \,{\mathrm e}^{x} \left (21 x^{2}+36 x +20\right )}{83 \left (x^{3}+4 x^{2}+6 x +5\right )}+\frac {-\frac {3504}{83} x^{2}-\frac {7738}{83} x -\frac {7665}{83}}{x^{3}+4 x^{2}+6 x +5}+\frac {\frac {4988}{83} x^{2}+\frac {10614}{83} x +\frac {13920}{83}}{x^{3}+4 x^{2}+6 x +5}+\frac {-\frac {4508}{83} x^{2}-\frac {7728}{83} x -\frac {12040}{83}}{x^{3}+4 x^{2}+6 x +5}\) | \(1065\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.36, size = 50, normalized size = 2.78 \begin {gather*} \frac {x^{4} + 4 \, x^{3} + 6 \, x^{2} + {\left (x^{3} + 4 \, x^{2} + 6 \, x + 5\right )} e^{x} + 5 \, x + 1}{x^{3} + 4 \, x^{2} + 6 \, x + 5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.16, size = 19, normalized size = 1.06 \begin {gather*} x+{\mathrm {e}}^x+\frac {1}{x^3+4\,x^2+6\,x+5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.17, size = 19, normalized size = 1.06 \begin {gather*} x + e^{x} + \frac {1}{x^{3} + 4 x^{2} + 6 x + 5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________