Optimal. Leaf size=24 \[ \frac {5 e^4}{\log \left (\frac {2}{1+\frac {x}{5+e^x+x}}\right )} \]
________________________________________________________________________________________
Rubi [F] time = 1.69, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {25 e^4+e^{4+x} (5-5 x)}{\left (25+e^{2 x}+15 x+2 x^2+e^x (10+3 x)\right ) \log ^2\left (\frac {10+2 e^x+2 x}{5+e^x+2 x}\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {5 e^4 \left (5+e^x-e^x x\right )}{\left (25+e^{2 x}+15 x+2 x^2+e^x (10+3 x)\right ) \log ^2\left (\frac {2 \left (5+e^x+x\right )}{5+e^x+2 x}\right )} \, dx\\ &=\left (5 e^4\right ) \int \frac {5+e^x-e^x x}{\left (25+e^{2 x}+15 x+2 x^2+e^x (10+3 x)\right ) \log ^2\left (\frac {2 \left (5+e^x+x\right )}{5+e^x+2 x}\right )} \, dx\\ &=\left (5 e^4\right ) \int \left (\frac {4+x}{\left (5+e^x+x\right ) \log ^2\left (\frac {2 \left (5+e^x+x\right )}{5+e^x+2 x}\right )}-\frac {3+2 x}{\left (5+e^x+2 x\right ) \log ^2\left (\frac {2 \left (5+e^x+x\right )}{5+e^x+2 x}\right )}\right ) \, dx\\ &=\left (5 e^4\right ) \int \frac {4+x}{\left (5+e^x+x\right ) \log ^2\left (\frac {2 \left (5+e^x+x\right )}{5+e^x+2 x}\right )} \, dx-\left (5 e^4\right ) \int \frac {3+2 x}{\left (5+e^x+2 x\right ) \log ^2\left (\frac {2 \left (5+e^x+x\right )}{5+e^x+2 x}\right )} \, dx\\ &=\left (5 e^4\right ) \int \left (\frac {4}{\left (5+e^x+x\right ) \log ^2\left (\frac {2 \left (5+e^x+x\right )}{5+e^x+2 x}\right )}+\frac {x}{\left (5+e^x+x\right ) \log ^2\left (\frac {2 \left (5+e^x+x\right )}{5+e^x+2 x}\right )}\right ) \, dx-\left (5 e^4\right ) \int \left (\frac {3}{\left (5+e^x+2 x\right ) \log ^2\left (\frac {2 \left (5+e^x+x\right )}{5+e^x+2 x}\right )}+\frac {2 x}{\left (5+e^x+2 x\right ) \log ^2\left (\frac {2 \left (5+e^x+x\right )}{5+e^x+2 x}\right )}\right ) \, dx\\ &=\left (5 e^4\right ) \int \frac {x}{\left (5+e^x+x\right ) \log ^2\left (\frac {2 \left (5+e^x+x\right )}{5+e^x+2 x}\right )} \, dx-\left (10 e^4\right ) \int \frac {x}{\left (5+e^x+2 x\right ) \log ^2\left (\frac {2 \left (5+e^x+x\right )}{5+e^x+2 x}\right )} \, dx-\left (15 e^4\right ) \int \frac {1}{\left (5+e^x+2 x\right ) \log ^2\left (\frac {2 \left (5+e^x+x\right )}{5+e^x+2 x}\right )} \, dx+\left (20 e^4\right ) \int \frac {1}{\left (5+e^x+x\right ) \log ^2\left (\frac {2 \left (5+e^x+x\right )}{5+e^x+2 x}\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.26, size = 26, normalized size = 1.08 \begin {gather*} \frac {5 e^4}{\log \left (\frac {2 \left (5+e^x+x\right )}{5+e^x+2 x}\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.65, size = 35, normalized size = 1.46 \begin {gather*} \frac {5 \, e^{4}}{\log \left (\frac {2 \, {\left ({\left (x + 5\right )} e^{4} + e^{\left (x + 4\right )}\right )}}{{\left (2 \, x + 5\right )} e^{4} + e^{\left (x + 4\right )}}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.20, size = 25, normalized size = 1.04 \begin {gather*} \frac {5 \, e^{4}}{\log \relax (2) - \log \left (2 \, x + e^{x} + 5\right ) + \log \left (x + e^{x} + 5\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.10, size = 161, normalized size = 6.71
method | result | size |
risch | \(\frac {10 i {\mathrm e}^{4}}{\pi \,\mathrm {csgn}\left (i \left ({\mathrm e}^{x}+5+x \right )\right ) \mathrm {csgn}\left (\frac {i}{\frac {{\mathrm e}^{x}}{2}+\frac {5}{2}+x}\right ) \mathrm {csgn}\left (\frac {i \left ({\mathrm e}^{x}+5+x \right )}{\frac {{\mathrm e}^{x}}{2}+\frac {5}{2}+x}\right )-\pi \,\mathrm {csgn}\left (i \left ({\mathrm e}^{x}+5+x \right )\right ) \mathrm {csgn}\left (\frac {i \left ({\mathrm e}^{x}+5+x \right )}{\frac {{\mathrm e}^{x}}{2}+\frac {5}{2}+x}\right )^{2}-\pi \,\mathrm {csgn}\left (\frac {i}{\frac {{\mathrm e}^{x}}{2}+\frac {5}{2}+x}\right ) \mathrm {csgn}\left (\frac {i \left ({\mathrm e}^{x}+5+x \right )}{\frac {{\mathrm e}^{x}}{2}+\frac {5}{2}+x}\right )^{2}+\pi \mathrm {csgn}\left (\frac {i \left ({\mathrm e}^{x}+5+x \right )}{\frac {{\mathrm e}^{x}}{2}+\frac {5}{2}+x}\right )^{3}+2 i \ln \left ({\mathrm e}^{x}+5+x \right )-2 i \ln \left (\frac {{\mathrm e}^{x}}{2}+\frac {5}{2}+x \right )}\) | \(161\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.64, size = 25, normalized size = 1.04 \begin {gather*} \frac {5 \, e^{4}}{\log \relax (2) - \log \left (2 \, x + e^{x} + 5\right ) + \log \left (x + e^{x} + 5\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.24, size = 26, normalized size = 1.08 \begin {gather*} \frac {5\,{\mathrm {e}}^4}{\ln \left (\frac {2\,x+2\,{\mathrm {e}}^x+10}{2\,x+{\mathrm {e}}^x+5}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.25, size = 24, normalized size = 1.00 \begin {gather*} \frac {5 e^{4}}{\log {\left (\frac {2 x + 2 e^{x} + 10}{2 x + e^{x} + 5} \right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________