Optimal. Leaf size=28 \[ \log ^2\left (-\frac {x+\log (x)}{x}+\frac {x^2}{\log ^2(2 (8-\log (x)))}\right ) \]
________________________________________________________________________________________
Rubi [F] time = 33.62, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\left (4 x^3+\left (32 x^3-4 x^3 \log (x)\right ) \log (16-2 \log (x))+\left (-16+18 \log (x)-2 \log ^2(x)\right ) \log ^3(16-2 \log (x))\right ) \log \left (\frac {x^3+(-x-\log (x)) \log ^2(16-2 \log (x))}{x \log ^2(16-2 \log (x))}\right )}{\left (8 x^4-x^4 \log (x)\right ) \log (16-2 \log (x))+\left (-8 x^2+\left (-8 x+x^2\right ) \log (x)+x \log ^2(x)\right ) \log ^3(16-2 \log (x))} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {\left (4 x^3+\left (32 x^3-4 x^3 \log (x)\right ) \log (16-2 \log (x))+\left (-16+18 \log (x)-2 \log ^2(x)\right ) \log ^3(16-2 \log (x))\right ) \log \left (\frac {x^3+(-x-\log (x)) \log ^2(16-2 \log (x))}{x \log ^2(-2 (-8+\log (x)))}\right )}{\left (8 x^4-x^4 \log (x)\right ) \log (16-2 \log (x))+\left (-8 x^2+\left (-8 x+x^2\right ) \log (x)+x \log ^2(x)\right ) \log ^3(16-2 \log (x))} \, dx\\ &=\int \left (\frac {16 \log ^2(-2 (-8+\log (x))) \log \left (-1-\frac {\log (x)}{x}+\frac {x^2}{\log ^2(-2 (-8+\log (x)))}\right )}{x (-8+\log (x)) \left (x^3-x \log ^2(-2 (-8+\log (x)))-\log (x) \log ^2(-2 (-8+\log (x)))\right )}-\frac {18 \log (x) \log ^2(-2 (-8+\log (x))) \log \left (-1-\frac {\log (x)}{x}+\frac {x^2}{\log ^2(-2 (-8+\log (x)))}\right )}{x (-8+\log (x)) \left (x^3-x \log ^2(-2 (-8+\log (x)))-\log (x) \log ^2(-2 (-8+\log (x)))\right )}+\frac {2 \log ^2(x) \log ^2(-2 (-8+\log (x))) \log \left (-1-\frac {\log (x)}{x}+\frac {x^2}{\log ^2(-2 (-8+\log (x)))}\right )}{x (-8+\log (x)) \left (x^3-x \log ^2(-2 (-8+\log (x)))-\log (x) \log ^2(-2 (-8+\log (x)))\right )}+\frac {32 x^2 \log \left (-1-\frac {\log (x)}{x}+\frac {x^2}{\log ^2(-2 (-8+\log (x)))}\right )}{(-8+\log (x)) \left (-x^3+x \log ^2(-2 (-8+\log (x)))+\log (x) \log ^2(-2 (-8+\log (x)))\right )}-\frac {4 x^2 \log (x) \log \left (-1-\frac {\log (x)}{x}+\frac {x^2}{\log ^2(-2 (-8+\log (x)))}\right )}{(-8+\log (x)) \left (-x^3+x \log ^2(-2 (-8+\log (x)))+\log (x) \log ^2(-2 (-8+\log (x)))\right )}+\frac {4 x^2 \log \left (-1-\frac {\log (x)}{x}+\frac {x^2}{\log ^2(-2 (-8+\log (x)))}\right )}{(-8+\log (x)) \log (-2 (-8+\log (x))) \left (-x^3+x \log ^2(-2 (-8+\log (x)))+\log (x) \log ^2(-2 (-8+\log (x)))\right )}\right ) \, dx\\ &=2 \int \frac {\log ^2(x) \log ^2(-2 (-8+\log (x))) \log \left (-1-\frac {\log (x)}{x}+\frac {x^2}{\log ^2(-2 (-8+\log (x)))}\right )}{x (-8+\log (x)) \left (x^3-x \log ^2(-2 (-8+\log (x)))-\log (x) \log ^2(-2 (-8+\log (x)))\right )} \, dx-4 \int \frac {x^2 \log (x) \log \left (-1-\frac {\log (x)}{x}+\frac {x^2}{\log ^2(-2 (-8+\log (x)))}\right )}{(-8+\log (x)) \left (-x^3+x \log ^2(-2 (-8+\log (x)))+\log (x) \log ^2(-2 (-8+\log (x)))\right )} \, dx+4 \int \frac {x^2 \log \left (-1-\frac {\log (x)}{x}+\frac {x^2}{\log ^2(-2 (-8+\log (x)))}\right )}{(-8+\log (x)) \log (-2 (-8+\log (x))) \left (-x^3+x \log ^2(-2 (-8+\log (x)))+\log (x) \log ^2(-2 (-8+\log (x)))\right )} \, dx+16 \int \frac {\log ^2(-2 (-8+\log (x))) \log \left (-1-\frac {\log (x)}{x}+\frac {x^2}{\log ^2(-2 (-8+\log (x)))}\right )}{x (-8+\log (x)) \left (x^3-x \log ^2(-2 (-8+\log (x)))-\log (x) \log ^2(-2 (-8+\log (x)))\right )} \, dx-18 \int \frac {\log (x) \log ^2(-2 (-8+\log (x))) \log \left (-1-\frac {\log (x)}{x}+\frac {x^2}{\log ^2(-2 (-8+\log (x)))}\right )}{x (-8+\log (x)) \left (x^3-x \log ^2(-2 (-8+\log (x)))-\log (x) \log ^2(-2 (-8+\log (x)))\right )} \, dx+32 \int \frac {x^2 \log \left (-1-\frac {\log (x)}{x}+\frac {x^2}{\log ^2(-2 (-8+\log (x)))}\right )}{(-8+\log (x)) \left (-x^3+x \log ^2(-2 (-8+\log (x)))+\log (x) \log ^2(-2 (-8+\log (x)))\right )} \, dx\\ &=2 \int \frac {\log ^2(x) \log ^2(-2 (-8+\log (x))) \log \left (-1-\frac {\log (x)}{x}+\frac {x^2}{\log ^2(-2 (-8+\log (x)))}\right )}{x (-8+\log (x)) \left (x^3-(x+\log (x)) \log ^2(-2 (-8+\log (x)))\right )} \, dx-4 \int \frac {x^2 \log (x) \log \left (-1-\frac {\log (x)}{x}+\frac {x^2}{\log ^2(-2 (-8+\log (x)))}\right )}{(-8+\log (x)) \left (-x^3+x \log ^2(-2 (-8+\log (x)))+\log (x) \log ^2(-2 (-8+\log (x)))\right )} \, dx+4 \int \frac {x^2 \log \left (-1-\frac {\log (x)}{x}+\frac {x^2}{\log ^2(-2 (-8+\log (x)))}\right )}{(-8+\log (x)) \log (-2 (-8+\log (x))) \left (-x^3+x \log ^2(-2 (-8+\log (x)))+\log (x) \log ^2(-2 (-8+\log (x)))\right )} \, dx+16 \int \frac {\log ^2(-2 (-8+\log (x))) \log \left (-1-\frac {\log (x)}{x}+\frac {x^2}{\log ^2(-2 (-8+\log (x)))}\right )}{x (-8+\log (x)) \left (x^3-(x+\log (x)) \log ^2(-2 (-8+\log (x)))\right )} \, dx-18 \int \frac {\log (x) \log ^2(-2 (-8+\log (x))) \log \left (-1-\frac {\log (x)}{x}+\frac {x^2}{\log ^2(-2 (-8+\log (x)))}\right )}{x (-8+\log (x)) \left (x^3-(x+\log (x)) \log ^2(-2 (-8+\log (x)))\right )} \, dx+32 \int \frac {x^2 \log \left (-1-\frac {\log (x)}{x}+\frac {x^2}{\log ^2(-2 (-8+\log (x)))}\right )}{(-8+\log (x)) \left (-x^3+x \log ^2(-2 (-8+\log (x)))+\log (x) \log ^2(-2 (-8+\log (x)))\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.14, size = 25, normalized size = 0.89 \begin {gather*} \log ^2\left (-1-\frac {\log (x)}{x}+\frac {x^2}{\log ^2(-2 (-8+\log (x)))}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.54, size = 35, normalized size = 1.25 \begin {gather*} \log \left (\frac {x^{3} - {\left (x + \log \relax (x)\right )} \log \left (-2 \, \log \relax (x) + 16\right )^{2}}{x \log \left (-2 \, \log \relax (x) + 16\right )^{2}}\right )^{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [F] time = 0.03, size = 0, normalized size = 0.00 \[\int \frac {\left (\left (-2 \ln \relax (x )^{2}+18 \ln \relax (x )-16\right ) \ln \left (-2 \ln \relax (x )+16\right )^{3}+\left (-4 x^{3} \ln \relax (x )+32 x^{3}\right ) \ln \left (-2 \ln \relax (x )+16\right )+4 x^{3}\right ) \ln \left (\frac {\left (-x -\ln \relax (x )\right ) \ln \left (-2 \ln \relax (x )+16\right )^{2}+x^{3}}{x \ln \left (-2 \ln \relax (x )+16\right )^{2}}\right )}{\left (x \ln \relax (x )^{2}+\left (x^{2}-8 x \right ) \ln \relax (x )-8 x^{2}\right ) \ln \left (-2 \ln \relax (x )+16\right )^{3}+\left (-x^{4} \ln \relax (x )+8 x^{4}\right ) \ln \left (-2 \ln \relax (x )+16\right )}\, dx\]
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} -2 \, \int \frac {{\left ({\left (\log \relax (x)^{2} - 9 \, \log \relax (x) + 8\right )} \log \left (-2 \, \log \relax (x) + 16\right )^{3} - 2 \, x^{3} + 2 \, {\left (x^{3} \log \relax (x) - 8 \, x^{3}\right )} \log \left (-2 \, \log \relax (x) + 16\right )\right )} \log \left (\frac {x^{3} - {\left (x + \log \relax (x)\right )} \log \left (-2 \, \log \relax (x) + 16\right )^{2}}{x \log \left (-2 \, \log \relax (x) + 16\right )^{2}}\right )}{{\left (x \log \relax (x)^{2} - 8 \, x^{2} + {\left (x^{2} - 8 \, x\right )} \log \relax (x)\right )} \log \left (-2 \, \log \relax (x) + 16\right )^{3} - {\left (x^{4} \log \relax (x) - 8 \, x^{4}\right )} \log \left (-2 \, \log \relax (x) + 16\right )}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.87, size = 37, normalized size = 1.32 \begin {gather*} {\ln \left (-\frac {{\ln \left (16-2\,\ln \relax (x)\right )}^2\,\left (x+\ln \relax (x)\right )-x^3}{x\,{\ln \left (16-2\,\ln \relax (x)\right )}^2}\right )}^2 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 5.27, size = 34, normalized size = 1.21 \begin {gather*} \log {\left (\frac {x^{3} + \left (- x - \log {\relax (x )}\right ) \log {\left (16 - 2 \log {\relax (x )} \right )}^{2}}{x \log {\left (16 - 2 \log {\relax (x )} \right )}^{2}} \right )}^{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________