Optimal. Leaf size=29 \[ \frac {-x+5 e^{-e^{1-x}} \left (x+x^2\right )}{50 x} \]
________________________________________________________________________________________
Rubi [A] time = 0.02, antiderivative size = 18, normalized size of antiderivative = 0.62, number of steps used = 2, number of rules used = 2, integrand size = 28, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.071, Rules used = {12, 2288} \begin {gather*} \frac {1}{10} e^{-e^{1-x}} (x+1) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2288
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{10} \int e^{-e^{1-x}} \left (1+e^{1-x} (1+x)\right ) \, dx\\ &=\frac {1}{10} e^{-e^{1-x}} (1+x)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.15, size = 18, normalized size = 0.62 \begin {gather*} \frac {1}{10} e^{-e^{1-x}} (1+x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.51, size = 14, normalized size = 0.48 \begin {gather*} \frac {1}{10} \, {\left (x + 1\right )} e^{\left (-e^{\left (-x + 1\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.24, size = 37, normalized size = 1.28 \begin {gather*} \frac {1}{10} \, {\left (x e^{\left (-x - e^{\left (-x + 1\right )} + 1\right )} + e^{\left (-x - e^{\left (-x + 1\right )} + 1\right )}\right )} e^{\left (x - 1\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.05, size = 15, normalized size = 0.52
method | result | size |
risch | \(\frac {\left (x +1\right ) {\mathrm e}^{-{\mathrm e}^{1-x}}}{10}\) | \(15\) |
norman | \(\left (\frac {x}{10}+\frac {1}{10}\right ) {\mathrm e}^{-{\mathrm e}^{1-x}}\) | \(16\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \frac {1}{10} \, e^{\left (-e^{\left (-x + 1\right )}\right )} + \frac {1}{10} \, \int {\left (x e + e^{x}\right )} e^{\left (-x - e^{\left (-x + 1\right )}\right )}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.06, size = 14, normalized size = 0.48 \begin {gather*} \frac {{\mathrm {e}}^{-{\mathrm {e}}^{-x}\,\mathrm {e}}\,\left (x+1\right )}{10} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.15, size = 10, normalized size = 0.34 \begin {gather*} \frac {\left (x + 1\right ) e^{- e^{1 - x}}}{10} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________