Optimal. Leaf size=18 \[ 2-\frac {4 e^x}{5}-x+\log \left (\frac {x}{9}\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.01, antiderivative size = 13, normalized size of antiderivative = 0.72, number of steps used = 6, number of rules used = 4, integrand size = 18, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.222, Rules used = {12, 14, 2194, 43} \begin {gather*} -x-\frac {4 e^x}{5}+\log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 14
Rule 43
Rule 2194
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{5} \int \frac {5-5 x-4 e^x x}{x} \, dx\\ &=\frac {1}{5} \int \left (-4 e^x-\frac {5 (-1+x)}{x}\right ) \, dx\\ &=-\frac {4 \int e^x \, dx}{5}-\int \frac {-1+x}{x} \, dx\\ &=-\frac {4 e^x}{5}-\int \left (1-\frac {1}{x}\right ) \, dx\\ &=-\frac {4 e^x}{5}-x+\log (x)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.01, size = 13, normalized size = 0.72 \begin {gather*} -\frac {4 e^x}{5}-x+\log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.46, size = 10, normalized size = 0.56 \begin {gather*} -x - \frac {4}{5} \, e^{x} + \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.19, size = 10, normalized size = 0.56 \begin {gather*} -x - \frac {4}{5} \, e^{x} + \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.02, size = 11, normalized size = 0.61
method | result | size |
default | \(\ln \relax (x )-x -\frac {4 \,{\mathrm e}^{x}}{5}\) | \(11\) |
norman | \(\ln \relax (x )-x -\frac {4 \,{\mathrm e}^{x}}{5}\) | \(11\) |
risch | \(\ln \relax (x )-x -\frac {4 \,{\mathrm e}^{x}}{5}\) | \(11\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.37, size = 10, normalized size = 0.56 \begin {gather*} -x - \frac {4}{5} \, e^{x} + \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.33, size = 10, normalized size = 0.56 \begin {gather*} \ln \relax (x)-\frac {4\,{\mathrm {e}}^x}{5}-x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.09, size = 10, normalized size = 0.56 \begin {gather*} - x - \frac {4 e^{x}}{5} + \log {\relax (x )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________