Optimal. Leaf size=28 \[ \frac {3 e^{2 \left (x-\log \left (\frac {2}{-5+x}\right )\right )} x}{-2+e^{-4+x}} \]
________________________________________________________________________________________
Rubi [F] time = 3.03, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{2 x} (-5+x)^2 \left (30+42 x-12 x^2+e^{-4+x} \left (-15-6 x+3 x^2\right )\right )}{4 \left (-20+e^{-4+x} (20-4 x)+e^{-8+2 x} (-5+x)+4 x\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{4} \int \frac {e^{2 x} (-5+x)^2 \left (30+42 x-12 x^2+e^{-4+x} \left (-15-6 x+3 x^2\right )\right )}{-20+e^{-4+x} (20-4 x)+e^{-8+2 x} (-5+x)+4 x} \, dx\\ &=\frac {1}{4} \int \frac {e^{8+2 x} (5-x) \left (-30-42 x+12 x^2-e^{-4+x} \left (-15-6 x+3 x^2\right )\right )}{\left (2 e^4-e^x\right )^2} \, dx\\ &=\frac {1}{4} \int \left (-\frac {6 e^{8+2 x} (-5+x)^2 x}{\left (-2 e^4+e^x\right )^2}-\frac {3 e^{4+2 x} (-5+x) \left (-5-2 x+x^2\right )}{2 e^4-e^x}\right ) \, dx\\ &=-\left (\frac {3}{4} \int \frac {e^{4+2 x} (-5+x) \left (-5-2 x+x^2\right )}{2 e^4-e^x} \, dx\right )-\frac {3}{2} \int \frac {e^{8+2 x} (-5+x)^2 x}{\left (-2 e^4+e^x\right )^2} \, dx\\ &=-\left (\frac {3}{4} \int \left (-\frac {25 e^{4+2 x}}{-2 e^4+e^x}-\frac {5 e^{4+2 x} x}{-2 e^4+e^x}+\frac {7 e^{4+2 x} x^2}{-2 e^4+e^x}-\frac {e^{4+2 x} x^3}{-2 e^4+e^x}\right ) \, dx\right )-\frac {3}{2} \int \left (\frac {25 e^{8+2 x} x}{\left (-2 e^4+e^x\right )^2}-\frac {10 e^{8+2 x} x^2}{\left (-2 e^4+e^x\right )^2}+\frac {e^{8+2 x} x^3}{\left (-2 e^4+e^x\right )^2}\right ) \, dx\\ &=\frac {3}{4} \int \frac {e^{4+2 x} x^3}{-2 e^4+e^x} \, dx-\frac {3}{2} \int \frac {e^{8+2 x} x^3}{\left (-2 e^4+e^x\right )^2} \, dx+\frac {15}{4} \int \frac {e^{4+2 x} x}{-2 e^4+e^x} \, dx-\frac {21}{4} \int \frac {e^{4+2 x} x^2}{-2 e^4+e^x} \, dx+15 \int \frac {e^{8+2 x} x^2}{\left (-2 e^4+e^x\right )^2} \, dx+\frac {75}{4} \int \frac {e^{4+2 x}}{-2 e^4+e^x} \, dx-\frac {75}{2} \int \frac {e^{8+2 x} x}{\left (-2 e^4+e^x\right )^2} \, dx\\ &=\frac {3}{4} \int \frac {e^{4+2 x} x^3}{-2 e^4+e^x} \, dx-\frac {3}{2} \int \frac {e^{8+2 x} x^3}{\left (-2 e^4+e^x\right )^2} \, dx+\frac {15}{4} \int \frac {e^{4+2 x} x}{-2 e^4+e^x} \, dx-\frac {21}{4} \int \frac {e^{4+2 x} x^2}{-2 e^4+e^x} \, dx+15 \int \frac {e^{8+2 x} x^2}{\left (-2 e^4+e^x\right )^2} \, dx-\frac {75}{2} \int \frac {e^{8+2 x} x}{\left (-2 e^4+e^x\right )^2} \, dx+\frac {1}{4} \left (75 e^4\right ) \operatorname {Subst}\left (\int \frac {x}{-2 e^4+x} \, dx,x,e^x\right )\\ &=\frac {3}{4} \int \frac {e^{4+2 x} x^3}{-2 e^4+e^x} \, dx-\frac {3}{2} \int \frac {e^{8+2 x} x^3}{\left (-2 e^4+e^x\right )^2} \, dx+\frac {15}{4} \int \frac {e^{4+2 x} x}{-2 e^4+e^x} \, dx-\frac {21}{4} \int \frac {e^{4+2 x} x^2}{-2 e^4+e^x} \, dx+15 \int \frac {e^{8+2 x} x^2}{\left (-2 e^4+e^x\right )^2} \, dx-\frac {75}{2} \int \frac {e^{8+2 x} x}{\left (-2 e^4+e^x\right )^2} \, dx+\frac {1}{4} \left (75 e^4\right ) \operatorname {Subst}\left (\int \left (1-\frac {2 e^4}{2 e^4-x}\right ) \, dx,x,e^x\right )\\ &=\frac {75 e^{4+x}}{4}+\frac {75}{2} e^8 \log \left (2 e^4-e^x\right )+\frac {3}{4} \int \frac {e^{4+2 x} x^3}{-2 e^4+e^x} \, dx-\frac {3}{2} \int \frac {e^{8+2 x} x^3}{\left (-2 e^4+e^x\right )^2} \, dx+\frac {15}{4} \int \frac {e^{4+2 x} x}{-2 e^4+e^x} \, dx-\frac {21}{4} \int \frac {e^{4+2 x} x^2}{-2 e^4+e^x} \, dx+15 \int \frac {e^{8+2 x} x^2}{\left (-2 e^4+e^x\right )^2} \, dx-\frac {75}{2} \int \frac {e^{8+2 x} x}{\left (-2 e^4+e^x\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.41, size = 28, normalized size = 1.00 \begin {gather*} \frac {3 e^{4+2 x} (-5+x)^2 x}{4 \left (-2 e^4+e^x\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.54, size = 26, normalized size = 0.93 \begin {gather*} \frac {3 \, {\left (x^{3} - 10 \, x^{2} + 25 \, x\right )} e^{\left (2 \, x\right )}}{4 \, {\left (e^{\left (x - 4\right )} - 2\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.15, size = 44, normalized size = 1.57 \begin {gather*} -\frac {3 \, {\left (x^{3} e^{\left (2 \, x + 4\right )} - 10 \, x^{2} e^{\left (2 \, x + 4\right )} + 25 \, x e^{\left (2 \, x + 4\right )}\right )}}{4 \, {\left (2 \, e^{4} - e^{x}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.32, size = 21, normalized size = 0.75
method | result | size |
risch | \(\frac {3 x \left (x -5\right )^{2} {\mathrm e}^{2 x}}{4 \left ({\mathrm e}^{x -4}-2\right )}\) | \(21\) |
norman | \(\frac {\frac {75 x \,{\mathrm e}^{8} {\mathrm e}^{2 x -8}}{4}-\frac {15 x^{2} {\mathrm e}^{8} {\mathrm e}^{2 x -8}}{2}+\frac {3 \,{\mathrm e}^{8} x^{3} {\mathrm e}^{2 x -8}}{4}}{{\mathrm e}^{x -4}-2}\) | \(48\) |
default | \(\frac {\frac {75 x \,{\mathrm e}^{8} {\mathrm e}^{2 x -8}}{4}-\frac {15 x^{2} {\mathrm e}^{8} {\mathrm e}^{2 x -8}}{2}+\frac {3 \,{\mathrm e}^{8} x^{3} {\mathrm e}^{2 x -8}}{4}}{{\mathrm e}^{x -4}-2}\) | \(96\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.43, size = 36, normalized size = 1.29 \begin {gather*} -\frac {3 \, {\left (x^{3} e^{4} - 10 \, x^{2} e^{4} + 25 \, x e^{4}\right )} e^{\left (2 \, x\right )}}{4 \, {\left (2 \, e^{4} - e^{x}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.37, size = 22, normalized size = 0.79 \begin {gather*} \frac {3\,x\,{\mathrm {e}}^{2\,x}\,{\left (x-5\right )}^2}{4\,\left ({\mathrm {e}}^{x-4}-2\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.25, size = 97, normalized size = 3.46 \begin {gather*} \frac {3 x^{3} e^{8}}{2} - 15 x^{2} e^{8} + \frac {75 x e^{8}}{2} + \frac {\left (3 x^{3} e^{4} - 30 x^{2} e^{4} + 75 x e^{4}\right ) \sqrt {e^{2 x}}}{4} + \frac {3 x^{3} e^{12} - 30 x^{2} e^{12} + 75 x e^{12}}{\sqrt {e^{2 x}} - 2 e^{4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________