Optimal. Leaf size=27 \[ -5+e^{\frac {4 e^{2+4 e^{e^x}} (1+x)^2}{(3+x)^2}} \]
________________________________________________________________________________________
Rubi [F] time = 10.26, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\exp \left (2+4 e^{e^x}+\frac {e^{2+4 e^{e^x}} (2+2 x)^2}{(3+x)^2}\right ) (2+2 x)^2 \left (4+e^{e^x+x} \left (12+16 x+4 x^2\right )\right )}{(3+x)^2 \left (3+4 x+x^2\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {\exp \left (2+4 e^{e^x}+\frac {e^{2+4 e^{e^x}} (2+2 x)^2}{(3+x)^2}\right ) (2+2 x) \left (4+e^{e^x+x} \left (12+16 x+4 x^2\right )\right )}{\left (\frac {3}{2}+\frac {x}{2}\right ) (3+x)^2} \, dx\\ &=2 \int \frac {\exp \left (2+4 e^{e^x}+\frac {e^{2+4 e^{e^x}} (2+2 x)^2}{(3+x)^2}\right ) (2+2 x) \left (4+e^{e^x+x} \left (12+16 x+4 x^2\right )\right )}{(3+x)^3} \, dx\\ &=2 \int \left (\frac {8 \exp \left (2+4 e^{e^x}+\frac {e^{2+4 e^{e^x}} (2+2 x)^2}{(3+x)^2}\right ) (1+x)}{(3+x)^3}+\frac {8 \exp \left (2+4 e^{e^x}+e^x+x+\frac {e^{2+4 e^{e^x}} (2+2 x)^2}{(3+x)^2}\right ) (1+x)^2}{(3+x)^2}\right ) \, dx\\ &=16 \int \frac {\exp \left (2+4 e^{e^x}+\frac {e^{2+4 e^{e^x}} (2+2 x)^2}{(3+x)^2}\right ) (1+x)}{(3+x)^3} \, dx+16 \int \frac {\exp \left (2+4 e^{e^x}+e^x+x+\frac {e^{2+4 e^{e^x}} (2+2 x)^2}{(3+x)^2}\right ) (1+x)^2}{(3+x)^2} \, dx\\ &=16 \int \left (-\frac {2 \exp \left (2+4 e^{e^x}+\frac {e^{2+4 e^{e^x}} (2+2 x)^2}{(3+x)^2}\right )}{(3+x)^3}+\frac {\exp \left (2+4 e^{e^x}+\frac {e^{2+4 e^{e^x}} (2+2 x)^2}{(3+x)^2}\right )}{(3+x)^2}\right ) \, dx+16 \int \left (\exp \left (2+4 e^{e^x}+e^x+x+\frac {e^{2+4 e^{e^x}} (2+2 x)^2}{(3+x)^2}\right )+\frac {4 \exp \left (2+4 e^{e^x}+e^x+x+\frac {e^{2+4 e^{e^x}} (2+2 x)^2}{(3+x)^2}\right )}{(3+x)^2}-\frac {4 \exp \left (2+4 e^{e^x}+e^x+x+\frac {e^{2+4 e^{e^x}} (2+2 x)^2}{(3+x)^2}\right )}{3+x}\right ) \, dx\\ &=16 \int \exp \left (2+4 e^{e^x}+e^x+x+\frac {e^{2+4 e^{e^x}} (2+2 x)^2}{(3+x)^2}\right ) \, dx+16 \int \frac {\exp \left (2+4 e^{e^x}+\frac {e^{2+4 e^{e^x}} (2+2 x)^2}{(3+x)^2}\right )}{(3+x)^2} \, dx-32 \int \frac {\exp \left (2+4 e^{e^x}+\frac {e^{2+4 e^{e^x}} (2+2 x)^2}{(3+x)^2}\right )}{(3+x)^3} \, dx+64 \int \frac {\exp \left (2+4 e^{e^x}+e^x+x+\frac {e^{2+4 e^{e^x}} (2+2 x)^2}{(3+x)^2}\right )}{(3+x)^2} \, dx-64 \int \frac {\exp \left (2+4 e^{e^x}+e^x+x+\frac {e^{2+4 e^{e^x}} (2+2 x)^2}{(3+x)^2}\right )}{3+x} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 1.79, size = 25, normalized size = 0.93 \begin {gather*} e^{\frac {4 e^{2+4 e^{e^x}} (1+x)^2}{(3+x)^2}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.55, size = 97, normalized size = 3.59 \begin {gather*} e^{\left ({\left (2 \, e^{x} \log \left (\frac {2 \, {\left (x + 1\right )}}{x + 3}\right ) + e^{\left (2 \, {\left (e^{x} \log \left (\frac {2 \, {\left (x + 1\right )}}{x + 3}\right ) + 2 \, e^{\left (x + e^{x}\right )} + e^{x}\right )} e^{\left (-x\right )} + x\right )} + 4 \, e^{\left (x + e^{x}\right )} + 2 \, e^{x}\right )} e^{\left (-x\right )} - 2 \, {\left (e^{x} \log \left (\frac {2 \, {\left (x + 1\right )}}{x + 3}\right ) + 2 \, e^{\left (x + e^{x}\right )} + e^{x}\right )} e^{\left (-x\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {4 \, {\left ({\left (x^{2} + 4 \, x + 3\right )} e^{\left (x + e^{x}\right )} + 1\right )} e^{\left (e^{\left (4 \, e^{\left (e^{x}\right )} + 2 \, \log \left (\frac {2 \, {\left (x + 1\right )}}{x + 3}\right ) + 2\right )} + 4 \, e^{\left (e^{x}\right )} + 2 \, \log \left (\frac {2 \, {\left (x + 1\right )}}{x + 3}\right ) + 2\right )}}{x^{2} + 4 \, x + 3}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.44, size = 124, normalized size = 4.59
method | result | size |
risch | \({\mathrm e}^{\frac {4 \left (x +1\right )^{2} {\mathrm e}^{4 \,{\mathrm e}^{{\mathrm e}^{x}}+2-i \pi \mathrm {csgn}\left (\frac {i \left (x +1\right )}{3+x}\right )^{3}+i \pi \mathrm {csgn}\left (\frac {i \left (x +1\right )}{3+x}\right )^{2} \mathrm {csgn}\left (\frac {i}{3+x}\right )+i \pi \mathrm {csgn}\left (\frac {i \left (x +1\right )}{3+x}\right )^{2} \mathrm {csgn}\left (i \left (x +1\right )\right )-i \pi \,\mathrm {csgn}\left (\frac {i \left (x +1\right )}{3+x}\right ) \mathrm {csgn}\left (\frac {i}{3+x}\right ) \mathrm {csgn}\left (i \left (x +1\right )\right )}}{\left (3+x \right )^{2}}}\) | \(124\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.74, size = 47, normalized size = 1.74 \begin {gather*} e^{\left (\frac {16 \, e^{\left (4 \, e^{\left (e^{x}\right )} + 2\right )}}{x^{2} + 6 \, x + 9} - \frac {16 \, e^{\left (4 \, e^{\left (e^{x}\right )} + 2\right )}}{x + 3} + 4 \, e^{\left (4 \, e^{\left (e^{x}\right )} + 2\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.44, size = 68, normalized size = 2.52 \begin {gather*} {\mathrm {e}}^{\frac {8\,x\,{\mathrm {e}}^{4\,{\mathrm {e}}^{{\mathrm {e}}^x}}\,{\mathrm {e}}^2}{x^2+6\,x+9}}\,{\mathrm {e}}^{\frac {4\,x^2\,{\mathrm {e}}^{4\,{\mathrm {e}}^{{\mathrm {e}}^x}}\,{\mathrm {e}}^2}{x^2+6\,x+9}}\,{\mathrm {e}}^{\frac {4\,{\mathrm {e}}^{4\,{\mathrm {e}}^{{\mathrm {e}}^x}}\,{\mathrm {e}}^2}{x^2+6\,x+9}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 2.16, size = 22, normalized size = 0.81 \begin {gather*} e^{\frac {\left (2 x + 2\right )^{2} e^{4 e^{e^{x}} + 2}}{\left (x + 3\right )^{2}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________