Optimal. Leaf size=21 \[ \frac {e^{-4+\left (x+e^{4/x} x\right )^2}}{x} \]
________________________________________________________________________________________
Rubi [B] time = 0.92, antiderivative size = 93, normalized size of antiderivative = 4.43, number of steps used = 2, number of rules used = 2, integrand size = 84, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.024, Rules used = {6688, 2288} \begin {gather*} \frac {e^{\left (e^{4/x}+1\right )^2 x^2-4} \left (-x^2+2 e^{4/x} (2-x) x+e^{8/x} (4-x) x\right )}{x^2 \left (4 e^{4/x} \left (e^{4/x}+1\right )-\left (e^{4/x}+1\right )^2 x\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 2288
Rule 6688
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{-4+\left (1+e^{4/x}\right )^2 x^2} \left (-1+2 e^{8/x} (-4+x) x+4 e^{4/x} (-2+x) x+2 x^2\right )}{x^2} \, dx\\ &=\frac {e^{-4+\left (1+e^{4/x}\right )^2 x^2} \left (2 e^{4/x} (2-x) x+e^{8/x} (4-x) x-x^2\right )}{x^2 \left (4 e^{4/x} \left (1+e^{4/x}\right )-\left (1+e^{4/x}\right )^2 x\right )}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.34, size = 23, normalized size = 1.10 \begin {gather*} \frac {e^{-4+\left (1+e^{4/x}\right )^2 x^2}}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.73, size = 48, normalized size = 2.29 \begin {gather*} \frac {e^{\left ({\left (x^{2} e^{\left (\frac {4 \, {\left (x + 2\right )}}{x}\right )} + 2 \, x^{2} e^{\left (\frac {2 \, {\left (x + 2\right )}}{x} + 2\right )} + {\left (x^{2} - 6\right )} e^{4}\right )} e^{\left (-4\right )} + 2\right )}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {{\left ({\left (2 \, x^{2} - 1\right )} e^{2} + 2 \, {\left (x^{2} - 4 \, x\right )} e^{\left (\frac {8}{x} + 2\right )} + 4 \, {\left (x^{2} - 2 \, x\right )} e^{\left (\frac {4}{x} + 2\right )}\right )} e^{\left (x^{2} e^{\frac {8}{x}} + 2 \, x^{2} e^{\frac {4}{x}} + x^{2} - 6\right )}}{x^{2}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.14, size = 32, normalized size = 1.52
method | result | size |
risch | \(\frac {{\mathrm e}^{-4+x^{2} {\mathrm e}^{\frac {8}{x}}+2 x^{2} {\mathrm e}^{\frac {4}{x}}+x^{2}}}{x}\) | \(32\) |
norman | \(\frac {{\mathrm e}^{2} {\mathrm e}^{x^{2} {\mathrm e}^{\frac {8}{x}}+2 x^{2} {\mathrm e}^{\frac {4}{x}}+x^{2}-6}}{x}\) | \(41\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.54, size = 31, normalized size = 1.48 \begin {gather*} \frac {e^{\left (x^{2} e^{\frac {8}{x}} + 2 \, x^{2} e^{\frac {4}{x}} + x^{2} - 4\right )}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.35, size = 33, normalized size = 1.57 \begin {gather*} \frac {{\mathrm {e}}^{2\,x^2\,{\mathrm {e}}^{4/x}}\,{\mathrm {e}}^{x^2\,{\mathrm {e}}^{8/x}}\,{\mathrm {e}}^{x^2}\,{\mathrm {e}}^{-4}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.35, size = 29, normalized size = 1.38 \begin {gather*} \frac {e^{2} e^{x^{2} e^{\frac {8}{x}} + 2 x^{2} e^{\frac {4}{x}} + x^{2} - 6}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________