Optimal. Leaf size=32 \[ x+2 \left (2 x+\frac {e^2 x^2}{1-x}-\log (5) (5-\log (x))\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.10, antiderivative size = 27, normalized size of antiderivative = 0.84, number of steps used = 4, number of rules used = 3, integrand size = 55, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.055, Rules used = {1594, 27, 1620} \begin {gather*} \left (5-2 e^2\right ) x+\frac {2 e^2}{1-x}+\log (25) \log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 27
Rule 1594
Rule 1620
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {5 x-10 x^2+5 x^3+e^2 \left (4 x^2-2 x^3\right )+\left (2-4 x+2 x^2\right ) \log (5)}{x \left (1-2 x+x^2\right )} \, dx\\ &=\int \frac {5 x-10 x^2+5 x^3+e^2 \left (4 x^2-2 x^3\right )+\left (2-4 x+2 x^2\right ) \log (5)}{(-1+x)^2 x} \, dx\\ &=\int \left (5 \left (1-\frac {2 e^2}{5}\right )+\frac {2 e^2}{(-1+x)^2}+\frac {\log (25)}{x}\right ) \, dx\\ &=\frac {2 e^2}{1-x}+\left (5-2 e^2\right ) x+\log (25) \log (x)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.04, size = 24, normalized size = 0.75 \begin {gather*} e^2 \left (-\frac {2}{-1+x}-2 x\right )+5 x+\log (25) \log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.43, size = 36, normalized size = 1.12 \begin {gather*} \frac {2 \, {\left (x - 1\right )} \log \relax (5) \log \relax (x) + 5 \, x^{2} - 2 \, {\left (x^{2} - x + 1\right )} e^{2} - 5 \, x}{x - 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.13, size = 25, normalized size = 0.78 \begin {gather*} -2 \, x e^{2} + 2 \, \log \relax (5) \log \left ({\left | x \right |}\right ) + 5 \, x - \frac {2 \, e^{2}}{x - 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 25, normalized size = 0.78
method | result | size |
default | \(-2 \,{\mathrm e}^{2} x +5 x -\frac {2 \,{\mathrm e}^{2}}{x -1}+2 \ln \relax (5) \ln \relax (x )\) | \(25\) |
risch | \(-2 \,{\mathrm e}^{2} x +5 x -\frac {2 \,{\mathrm e}^{2}}{x -1}+2 \ln \relax (5) \ln \left (-x \right )\) | \(27\) |
norman | \(\frac {\left (-2 \,{\mathrm e}^{2}+5\right ) x^{2}-5}{x -1}+2 \ln \relax (5) \ln \relax (x )\) | \(28\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.35, size = 25, normalized size = 0.78 \begin {gather*} -x {\left (2 \, e^{2} - 5\right )} + 2 \, \log \relax (5) \log \relax (x) - \frac {2 \, e^{2}}{x - 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.12, size = 53, normalized size = 1.66 \begin {gather*} 2\,\ln \relax (5)\,\ln \relax (x)-\ln \left (x-1\right )\,\left (2\,\ln \relax (5)-\ln \left (25\right )\right )-\frac {2\,{\mathrm {e}}^2+2\,\ln \relax (5)+\ln \left (25\right )-\ln \left (625\right )}{x-1}-x\,\left (2\,{\mathrm {e}}^2-5\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.25, size = 24, normalized size = 0.75 \begin {gather*} x \left (5 - 2 e^{2}\right ) + 2 \log {\relax (5 )} \log {\relax (x )} - \frac {2 e^{2}}{x - 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________