Optimal. Leaf size=19 \[ x^3 \left (\frac {1}{2}+e^4+x-\frac {x^8}{3}\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.01, antiderivative size = 25, normalized size of antiderivative = 1.32, number of steps used = 3, number of rules used = 2, integrand size = 28, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.071, Rules used = {6, 12} \begin {gather*} -\frac {x^{11}}{3}+x^4+\frac {1}{2} \left (1+2 e^4\right ) x^3 \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6
Rule 12
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {1}{6} \left (\left (9+18 e^4\right ) x^2+24 x^3-22 x^{10}\right ) \, dx\\ &=\frac {1}{6} \int \left (\left (9+18 e^4\right ) x^2+24 x^3-22 x^{10}\right ) \, dx\\ &=\frac {1}{2} \left (1+2 e^4\right ) x^3+x^4-\frac {x^{11}}{3}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.01, size = 22, normalized size = 1.16 \begin {gather*} \frac {1}{6} x^3 \left (3+6 e^4+6 x-2 x^8\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.69, size = 20, normalized size = 1.05 \begin {gather*} -\frac {1}{3} \, x^{11} + x^{4} + x^{3} e^{4} + \frac {1}{2} \, x^{3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.16, size = 20, normalized size = 1.05 \begin {gather*} -\frac {1}{3} \, x^{11} + x^{4} + x^{3} e^{4} + \frac {1}{2} \, x^{3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.03, size = 18, normalized size = 0.95
method | result | size |
norman | \(x^{4}+\left ({\mathrm e}^{4}+\frac {1}{2}\right ) x^{3}-\frac {x^{11}}{3}\) | \(18\) |
gosper | \(\frac {x^{3} \left (-2 x^{8}+6 \,{\mathrm e}^{4}+6 x +3\right )}{6}\) | \(20\) |
default | \(x^{3} {\mathrm e}^{4}-\frac {x^{11}}{3}+x^{4}+\frac {x^{3}}{2}\) | \(21\) |
risch | \(x^{3} {\mathrm e}^{4}-\frac {x^{11}}{3}+x^{4}+\frac {x^{3}}{2}\) | \(21\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.36, size = 20, normalized size = 1.05 \begin {gather*} -\frac {1}{3} \, x^{11} + x^{4} + x^{3} e^{4} + \frac {1}{2} \, x^{3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.16, size = 17, normalized size = 0.89 \begin {gather*} -\frac {x^{11}}{3}+x^4+\left ({\mathrm {e}}^4+\frac {1}{2}\right )\,x^3 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.06, size = 17, normalized size = 0.89 \begin {gather*} - \frac {x^{11}}{3} + x^{4} + x^{3} \left (\frac {1}{2} + e^{4}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________