Optimal. Leaf size=24 \[ x \left (-x+3 \left (-2-\frac {2 x^2}{e (-2+\log (x))}\right )\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.28, antiderivative size = 24, normalized size of antiderivative = 1.00, number of steps used = 9, number of rules used = 6, integrand size = 58, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.103, Rules used = {6741, 12, 6742, 2306, 2309, 2178} \begin {gather*} \frac {6 x^3}{e (2-\log (x))}-(x+3)^2 \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2178
Rule 2306
Rule 2309
Rule 6741
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e (-24-8 x)+42 x^2+\left (-18 x^2+e (24+8 x)\right ) \log (x)+e (-6-2 x) \log ^2(x)}{e (2-\log (x))^2} \, dx\\ &=\frac {\int \frac {e (-24-8 x)+42 x^2+\left (-18 x^2+e (24+8 x)\right ) \log (x)+e (-6-2 x) \log ^2(x)}{(2-\log (x))^2} \, dx}{e}\\ &=\frac {\int \left (-2 e (3+x)+\frac {6 x^2}{(-2+\log (x))^2}-\frac {18 x^2}{-2+\log (x)}\right ) \, dx}{e}\\ &=-(3+x)^2+\frac {6 \int \frac {x^2}{(-2+\log (x))^2} \, dx}{e}-\frac {18 \int \frac {x^2}{-2+\log (x)} \, dx}{e}\\ &=-(3+x)^2+\frac {6 x^3}{e (2-\log (x))}+\frac {18 \int \frac {x^2}{-2+\log (x)} \, dx}{e}-\frac {18 \operatorname {Subst}\left (\int \frac {e^{3 x}}{-2+x} \, dx,x,\log (x)\right )}{e}\\ &=-(3+x)^2-18 e^5 \text {Ei}(-3 (2-\log (x)))+\frac {6 x^3}{e (2-\log (x))}+\frac {18 \operatorname {Subst}\left (\int \frac {e^{3 x}}{-2+x} \, dx,x,\log (x)\right )}{e}\\ &=-(3+x)^2+\frac {6 x^3}{e (2-\log (x))}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.10, size = 26, normalized size = 1.08 \begin {gather*} -\frac {2 \left (\frac {1}{2} e x (6+x)+\frac {3 x^3}{-2+\log (x)}\right )}{e} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.57, size = 43, normalized size = 1.79 \begin {gather*} -\frac {6 \, x^{3} + {\left (x^{2} + 6 \, x\right )} e \log \relax (x) - 2 \, {\left (x^{2} + 6 \, x\right )} e}{e \log \relax (x) - 2 \, e} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.17, size = 94, normalized size = 3.92 \begin {gather*} -\frac {x^{2} e \log \relax (x)}{e \log \relax (x) - 2 \, e} - \frac {6 \, x^{3}}{e \log \relax (x) - 2 \, e} + \frac {2 \, x^{2} e}{e \log \relax (x) - 2 \, e} - \frac {6 \, x e \log \relax (x)}{e \log \relax (x) - 2 \, e} + \frac {12 \, x e}{e \log \relax (x) - 2 \, e} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 23, normalized size = 0.96
method | result | size |
risch | \(-x^{2}-6 x -\frac {6 x^{3} {\mathrm e}^{-1}}{\ln \relax (x )-2}\) | \(23\) |
norman | \(\frac {12 x +2 x^{2}-6 x \ln \relax (x )-x^{2} \ln \relax (x )-6 x^{3} {\mathrm e}^{-1}}{\ln \relax (x )-2}\) | \(38\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \frac {24 \, e^{2} E_{2}\left (-\log \relax (x) + 2\right )}{\log \relax (x) - 2} + \frac {8 \, e^{4} E_{2}\left (-2 \, \log \relax (x) + 4\right )}{\log \relax (x) - 2} - \frac {42 \, e^{5} E_{2}\left (-3 \, \log \relax (x) + 6\right )}{\log \relax (x) - 2} + \frac {36 \, x^{3} - 6 \, x^{2} e - 12 \, x e - {\left (x^{2} e + 6 \, x e\right )} \log \relax (x)}{e \log \relax (x) - 2 \, e} - 2 \, \int \frac {63 \, x^{2} - 8 \, x e - 12 \, e}{e \log \relax (x) - 2 \, e}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.15, size = 42, normalized size = 1.75 \begin {gather*} \frac {6\,x^4}{2\,x\,\mathrm {e}-x\,\mathrm {e}\,\ln \relax (x)}-\frac {{\mathrm {e}}^{-1}\,\left (\mathrm {e}\,x^3+6\,\mathrm {e}\,x^2\right )}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.11, size = 24, normalized size = 1.00 \begin {gather*} - \frac {6 x^{3}}{e \log {\relax (x )} - 2 e} - x^{2} - 6 x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________