Optimal. Leaf size=32 \[ e^{\frac {2}{e^2 \log \left (\frac {75}{x^2}-x+\frac {x^2}{-x+x^2}\right )}} \]
________________________________________________________________________________________
Rubi [F] time = 4.73, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\exp \left (-2+\frac {2}{e^2 \log \left (\frac {-75+75 x+2 x^3-x^4}{-x^2+x^3}\right )}\right ) \left (-300+600 x-300 x^2-4 x^3+4 x^4-2 x^5\right )}{\left (-75 x+150 x^2-75 x^3+2 x^4-3 x^5+x^6\right ) \log ^2\left (\frac {-75+75 x+2 x^3-x^4}{-x^2+x^3}\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {2 \exp \left (-2+\frac {2}{e^2 \log \left (\frac {-75+75 x+2 x^3-x^4}{-x^2+x^3}\right )}\right ) \left (150-300 x+150 x^2+2 x^3-2 x^4+x^5\right )}{x \left (75-150 x+75 x^2-2 x^3+3 x^4-x^5\right ) \log ^2\left (\frac {-75+75 x+2 x^3-x^4}{(-1+x) x^2}\right )} \, dx\\ &=2 \int \frac {\exp \left (-2+\frac {2}{e^2 \log \left (\frac {-75+75 x+2 x^3-x^4}{-x^2+x^3}\right )}\right ) \left (150-300 x+150 x^2+2 x^3-2 x^4+x^5\right )}{x \left (75-150 x+75 x^2-2 x^3+3 x^4-x^5\right ) \log ^2\left (\frac {-75+75 x+2 x^3-x^4}{(-1+x) x^2}\right )} \, dx\\ &=2 \int \left (\frac {\exp \left (-2+\frac {2}{e^2 \log \left (\frac {-75+75 x+2 x^3-x^4}{-x^2+x^3}\right )}\right )}{(-1+x) \log ^2\left (-\frac {75-75 x-2 x^3+x^4}{(-1+x) x^2}\right )}+\frac {2 \exp \left (-2+\frac {2}{e^2 \log \left (\frac {-75+75 x+2 x^3-x^4}{-x^2+x^3}\right )}\right )}{x \log ^2\left (-\frac {75-75 x-2 x^3+x^4}{(-1+x) x^2}\right )}+\frac {\exp \left (-2+\frac {2}{e^2 \log \left (\frac {-75+75 x+2 x^3-x^4}{-x^2+x^3}\right )}\right ) \left (75+6 x^2-4 x^3\right )}{\left (75-75 x-2 x^3+x^4\right ) \log ^2\left (-\frac {75-75 x-2 x^3+x^4}{(-1+x) x^2}\right )}\right ) \, dx\\ &=2 \int \frac {\exp \left (-2+\frac {2}{e^2 \log \left (\frac {-75+75 x+2 x^3-x^4}{-x^2+x^3}\right )}\right )}{(-1+x) \log ^2\left (-\frac {75-75 x-2 x^3+x^4}{(-1+x) x^2}\right )} \, dx+2 \int \frac {\exp \left (-2+\frac {2}{e^2 \log \left (\frac {-75+75 x+2 x^3-x^4}{-x^2+x^3}\right )}\right ) \left (75+6 x^2-4 x^3\right )}{\left (75-75 x-2 x^3+x^4\right ) \log ^2\left (-\frac {75-75 x-2 x^3+x^4}{(-1+x) x^2}\right )} \, dx+4 \int \frac {\exp \left (-2+\frac {2}{e^2 \log \left (\frac {-75+75 x+2 x^3-x^4}{-x^2+x^3}\right )}\right )}{x \log ^2\left (-\frac {75-75 x-2 x^3+x^4}{(-1+x) x^2}\right )} \, dx\\ &=2 \int \left (\frac {75 \exp \left (-2+\frac {2}{e^2 \log \left (\frac {-75+75 x+2 x^3-x^4}{-x^2+x^3}\right )}\right )}{\left (75-75 x-2 x^3+x^4\right ) \log ^2\left (-\frac {75-75 x-2 x^3+x^4}{(-1+x) x^2}\right )}+\frac {6 \exp \left (-2+\frac {2}{e^2 \log \left (\frac {-75+75 x+2 x^3-x^4}{-x^2+x^3}\right )}\right ) x^2}{\left (75-75 x-2 x^3+x^4\right ) \log ^2\left (-\frac {75-75 x-2 x^3+x^4}{(-1+x) x^2}\right )}-\frac {4 \exp \left (-2+\frac {2}{e^2 \log \left (\frac {-75+75 x+2 x^3-x^4}{-x^2+x^3}\right )}\right ) x^3}{\left (75-75 x-2 x^3+x^4\right ) \log ^2\left (-\frac {75-75 x-2 x^3+x^4}{(-1+x) x^2}\right )}\right ) \, dx+2 \int \frac {\exp \left (-2+\frac {2}{e^2 \log \left (\frac {-75+75 x+2 x^3-x^4}{-x^2+x^3}\right )}\right )}{(-1+x) \log ^2\left (-\frac {75-75 x-2 x^3+x^4}{(-1+x) x^2}\right )} \, dx+4 \int \frac {\exp \left (-2+\frac {2}{e^2 \log \left (\frac {-75+75 x+2 x^3-x^4}{-x^2+x^3}\right )}\right )}{x \log ^2\left (-\frac {75-75 x-2 x^3+x^4}{(-1+x) x^2}\right )} \, dx\\ &=2 \int \frac {\exp \left (-2+\frac {2}{e^2 \log \left (\frac {-75+75 x+2 x^3-x^4}{-x^2+x^3}\right )}\right )}{(-1+x) \log ^2\left (-\frac {75-75 x-2 x^3+x^4}{(-1+x) x^2}\right )} \, dx+4 \int \frac {\exp \left (-2+\frac {2}{e^2 \log \left (\frac {-75+75 x+2 x^3-x^4}{-x^2+x^3}\right )}\right )}{x \log ^2\left (-\frac {75-75 x-2 x^3+x^4}{(-1+x) x^2}\right )} \, dx-8 \int \frac {\exp \left (-2+\frac {2}{e^2 \log \left (\frac {-75+75 x+2 x^3-x^4}{-x^2+x^3}\right )}\right ) x^3}{\left (75-75 x-2 x^3+x^4\right ) \log ^2\left (-\frac {75-75 x-2 x^3+x^4}{(-1+x) x^2}\right )} \, dx+12 \int \frac {\exp \left (-2+\frac {2}{e^2 \log \left (\frac {-75+75 x+2 x^3-x^4}{-x^2+x^3}\right )}\right ) x^2}{\left (75-75 x-2 x^3+x^4\right ) \log ^2\left (-\frac {75-75 x-2 x^3+x^4}{(-1+x) x^2}\right )} \, dx+150 \int \frac {\exp \left (-2+\frac {2}{e^2 \log \left (\frac {-75+75 x+2 x^3-x^4}{-x^2+x^3}\right )}\right )}{\left (75-75 x-2 x^3+x^4\right ) \log ^2\left (-\frac {75-75 x-2 x^3+x^4}{(-1+x) x^2}\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.06, size = 33, normalized size = 1.03 \begin {gather*} e^{\frac {2}{e^2 \log \left (-\frac {75-75 x-2 x^3+x^4}{(-1+x) x^2}\right )}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.58, size = 68, normalized size = 2.12 \begin {gather*} e^{\left (-\frac {2 \, {\left (e^{2} \log \left (-\frac {x^{4} - 2 \, x^{3} - 75 \, x + 75}{x^{3} - x^{2}}\right ) - 1\right )} e^{\left (-2\right )}}{\log \left (-\frac {x^{4} - 2 \, x^{3} - 75 \, x + 75}{x^{3} - x^{2}}\right )} + 2\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.39, size = 68, normalized size = 2.12 \begin {gather*} e^{\left (\frac {2 \, e^{\left (-2\right )}}{\log \left (-\frac {x^{4}}{x^{3} - x^{2}} + \frac {2 \, x^{3}}{x^{3} - x^{2}} + \frac {75 \, x}{x^{3} - x^{2}} - \frac {75}{x^{3} - x^{2}}\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 36, normalized size = 1.12
method | result | size |
risch | \({\mathrm e}^{\frac {2 \,{\mathrm e}^{-2}}{\ln \left (\frac {-x^{4}+2 x^{3}+75 x -75}{x^{3}-x^{2}}\right )}}\) | \(36\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} -2 \, \int \frac {{\left (x^{5} - 2 \, x^{4} + 2 \, x^{3} + 150 \, x^{2} - 300 \, x + 150\right )} e^{\left (\frac {2 \, e^{\left (-2\right )}}{\log \left (-\frac {x^{4} - 2 \, x^{3} - 75 \, x + 75}{x^{3} - x^{2}}\right )} - 2\right )}}{{\left (x^{6} - 3 \, x^{5} + 2 \, x^{4} - 75 \, x^{3} + 150 \, x^{2} - 75 \, x\right )} \log \left (-\frac {x^{4} - 2 \, x^{3} - 75 \, x + 75}{x^{3} - x^{2}}\right )^{2}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.12, size = 36, normalized size = 1.12 \begin {gather*} {\mathrm {e}}^{\frac {2\,{\mathrm {e}}^{-2}}{\ln \left (-\frac {-x^4+2\,x^3+75\,x-75}{x^2-x^3}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.80, size = 27, normalized size = 0.84 \begin {gather*} e^{\frac {2}{e^{2} \log {\left (\frac {- x^{4} + 2 x^{3} + 75 x - 75}{x^{3} - x^{2}} \right )}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________