Optimal. Leaf size=20 \[ \frac {1}{5} e^{11-4 e^{-2 x} x} (-3+x) x \]
________________________________________________________________________________________
Rubi [F] time = 0.67, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {1}{5} e^{e^{-2 x} \left (3 e^{2 x}-4 x\right )-2 x} \left (e^{8+2 x} (-3+2 x)+e^8 \left (12 x-28 x^2+8 x^3\right )\right ) \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{5} \int e^{e^{-2 x} \left (3 e^{2 x}-4 x\right )-2 x} \left (e^{8+2 x} (-3+2 x)+e^8 \left (12 x-28 x^2+8 x^3\right )\right ) \, dx\\ &=\frac {1}{5} \int e^{11-2 x-4 e^{-2 x} x} \left (e^{2 x} (-3+2 x)+4 x \left (3-7 x+2 x^2\right )\right ) \, dx\\ &=\frac {1}{5} \int \left (e^{11-4 e^{-2 x} x} (-3+2 x)+4 e^{11-2 x-4 e^{-2 x} x} x \left (3-7 x+2 x^2\right )\right ) \, dx\\ &=\frac {1}{5} \int e^{11-4 e^{-2 x} x} (-3+2 x) \, dx+\frac {4}{5} \int e^{11-2 x-4 e^{-2 x} x} x \left (3-7 x+2 x^2\right ) \, dx\\ &=\frac {1}{5} \int \left (-3 e^{11-4 e^{-2 x} x}+2 e^{11-4 e^{-2 x} x} x\right ) \, dx+\frac {4}{5} \int \left (3 e^{11-2 x-4 e^{-2 x} x} x-7 e^{11-2 x-4 e^{-2 x} x} x^2+2 e^{11-2 x-4 e^{-2 x} x} x^3\right ) \, dx\\ &=\frac {2}{5} \int e^{11-4 e^{-2 x} x} x \, dx-\frac {3}{5} \int e^{11-4 e^{-2 x} x} \, dx+\frac {8}{5} \int e^{11-2 x-4 e^{-2 x} x} x^3 \, dx+\frac {12}{5} \int e^{11-2 x-4 e^{-2 x} x} x \, dx-\frac {28}{5} \int e^{11-2 x-4 e^{-2 x} x} x^2 \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.26, size = 20, normalized size = 1.00 \begin {gather*} \frac {1}{5} e^{11-4 e^{-2 x} x} (-3+x) x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.56, size = 41, normalized size = 2.05 \begin {gather*} \frac {1}{5} \, {\left (x^{2} - 3 \, x\right )} e^{\left (-{\left (4 \, x e^{8} + {\left (2 \, x - 3\right )} e^{\left (2 \, x + 8\right )}\right )} e^{\left (-2 \, x - 8\right )} + 2 \, x + 8\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.25, size = 40, normalized size = 2.00 \begin {gather*} \frac {1}{5} \, {\left (x^{2} e^{\left (-4 \, x e^{\left (-2 \, x\right )} - 2 \, x + 11\right )} - 3 \, x e^{\left (-4 \, x e^{\left (-2 \, x\right )} - 2 \, x + 11\right )}\right )} e^{\left (2 \, x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.08, size = 27, normalized size = 1.35
method | result | size |
risch | \(\frac {x \left (x -3\right ) {\mathrm e}^{3 \,{\mathrm e}^{-2 x} {\mathrm e}^{2 x}-4 \,{\mathrm e}^{-2 x} x +8}}{5}\) | \(27\) |
norman | \(\left (\frac {x^{2} {\mathrm e}^{8} {\mathrm e}^{2 x} {\mathrm e}^{\left (3 \,{\mathrm e}^{2 x}-4 x \right ) {\mathrm e}^{-2 x}}}{5}-\frac {3 \,{\mathrm e}^{8} {\mathrm e}^{2 x} x \,{\mathrm e}^{\left (3 \,{\mathrm e}^{2 x}-4 x \right ) {\mathrm e}^{-2 x}}}{5}\right ) {\mathrm e}^{-2 x}\) | \(59\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \frac {1}{5} \, \int {\left (4 \, {\left (2 \, x^{3} - 7 \, x^{2} + 3 \, x\right )} e^{8} + {\left (2 \, x - 3\right )} e^{\left (2 \, x + 8\right )}\right )} e^{\left (-{\left (4 \, x - 3 \, e^{\left (2 \, x\right )}\right )} e^{\left (-2 \, x\right )} - 2 \, x\right )}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.13, size = 16, normalized size = 0.80 \begin {gather*} \frac {x\,{\mathrm {e}}^{11}\,{\mathrm {e}}^{-4\,x\,{\mathrm {e}}^{-2\,x}}\,\left (x-3\right )}{5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.26, size = 31, normalized size = 1.55 \begin {gather*} \frac {\left (x^{2} e^{8} - 3 x e^{8}\right ) e^{\left (- 4 x + 3 e^{2 x}\right ) e^{- 2 x}}}{5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________