Optimal. Leaf size=20 \[ 2+x+\frac {16 x}{1-e+\frac {4+x}{x}} \]
________________________________________________________________________________________
Rubi [A] time = 0.07, antiderivative size = 35, normalized size of antiderivative = 1.75, number of steps used = 7, number of rules used = 4, integrand size = 59, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.068, Rules used = {6, 1984, 27, 683} \begin {gather*} \frac {(18-e) x}{2-e}+\frac {256}{(2-e)^2 ((2-e) x+4)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6
Rule 27
Rule 683
Rule 1984
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {16+144 x+\left (36+e^2\right ) x^2+e \left (-8 x-20 x^2\right )}{16+16 x+4 x^2+e^2 x^2+e \left (-8 x-4 x^2\right )} \, dx\\ &=\int \frac {16+144 x+\left (36+e^2\right ) x^2+e \left (-8 x-20 x^2\right )}{16+16 x+\left (4+e^2\right ) x^2+e \left (-8 x-4 x^2\right )} \, dx\\ &=\int \frac {16+8 (18-e) x+(2-e) (18-e) x^2}{16+8 (2-e) x+(2-e)^2 x^2} \, dx\\ &=\int \frac {16+8 (18-e) x+(2-e) (18-e) x^2}{(-4-2 x+e x)^2} \, dx\\ &=\int \frac {16+8 (18-e) x+(2-e) (18-e) x^2}{(-4+(-2+e) x)^2} \, dx\\ &=\int \left (\frac {-18+e}{-2+e}+\frac {256}{(-2+e) (4+(2-e) x)^2}\right ) \, dx\\ &=\frac {(18-e) x}{2-e}+\frac {256}{(2-e)^2 (4+(2-e) x)}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.03, size = 28, normalized size = 1.40 \begin {gather*} \frac {(-18+e) x}{-2+e}-\frac {256}{(-2+e)^2 (-4-2 x+e x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.57, size = 72, normalized size = 3.60 \begin {gather*} \frac {x^{2} e^{3} - 72 \, x^{2} - 2 \, {\left (11 \, x^{2} + 2 \, x\right )} e^{2} + 4 \, {\left (19 \, x^{2} + 20 \, x\right )} e - 144 \, x - 256}{x e^{3} - 2 \, {\left (3 \, x + 2\right )} e^{2} + 4 \, {\left (3 \, x + 4\right )} e - 8 \, x - 16} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F(-2)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: NotImplementedError} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.30, size = 23, normalized size = 1.15
method | result | size |
gosper | \(\frac {x \left (x \,{\mathrm e}-18 x -4\right )}{x \,{\mathrm e}-2 x -4}\) | \(23\) |
norman | \(\frac {\left ({\mathrm e}-18\right ) x^{2}-4 x}{x \,{\mathrm e}-2 x -4}\) | \(25\) |
risch | \(\frac {x \,{\mathrm e}}{{\mathrm e}-2}-\frac {18 x}{{\mathrm e}-2}-\frac {256}{\left ({\mathrm e}-2\right )^{2} \left (x \,{\mathrm e}-2 x -4\right )}\) | \(40\) |
meijerg | \(\frac {\left ({\mathrm e}-2\right )^{2} x}{\left ({\mathrm e}^{2}-4 \,{\mathrm e}+4\right ) \left (1+\frac {x \left (2-{\mathrm e}\right )}{4}\right )}+\frac {4 \left ({\mathrm e}^{2}-20 \,{\mathrm e}+36\right ) \left ({\mathrm e}-2\right )^{2} \left (\frac {x \left (2-{\mathrm e}\right ) \left (\frac {3 x \left (2-{\mathrm e}\right )}{4}+6\right )}{12+3 x \left (2-{\mathrm e}\right )}-2 \ln \left (1+\frac {x \left (2-{\mathrm e}\right )}{4}\right )\right )}{\left ({\mathrm e}^{2}-4 \,{\mathrm e}+4\right ) \left (2-{\mathrm e}\right )^{3}}+\frac {\left (-8 \,{\mathrm e}+144\right ) \left ({\mathrm e}-2\right )^{2} \left (-\frac {x \left (2-{\mathrm e}\right )}{4 \left (1+\frac {x \left (2-{\mathrm e}\right )}{4}\right )}+\ln \left (1+\frac {x \left (2-{\mathrm e}\right )}{4}\right )\right )}{\left ({\mathrm e}^{2}-4 \,{\mathrm e}+4\right ) \left (2-{\mathrm e}\right )^{2}}\) | \(181\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.35, size = 41, normalized size = 2.05 \begin {gather*} \frac {x {\left (e - 18\right )}}{e - 2} - \frac {256}{x {\left (e^{3} - 6 \, e^{2} + 12 \, e - 8\right )} - 4 \, e^{2} + 16 \, e - 16} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.19, size = 43, normalized size = 2.15 \begin {gather*} \frac {x\,\left ({\mathrm {e}}^2-20\,\mathrm {e}+36\right )}{{\left (\mathrm {e}-2\right )}^2}-\frac {256}{\left (\mathrm {e}-2\right )\,\left (x\,\left ({\mathrm {e}}^2-4\,\mathrm {e}+4\right )-4\,\mathrm {e}+8\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.30, size = 46, normalized size = 2.30 \begin {gather*} x \left (- \frac {18}{-2 + e} + \frac {e}{-2 + e}\right ) - \frac {256}{x \left (- 6 e^{2} - 8 + e^{3} + 12 e\right ) - 4 e^{2} - 16 + 16 e} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________