Optimal. Leaf size=15 \[ e^{e^{\left (-1-x^2\right )^2}}+x \]
________________________________________________________________________________________
Rubi [F] time = 0.41, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \left (1+e^{1+e^{1+2 x^2+x^4}+2 x^2+x^4} \left (4 x+4 x^3\right )\right ) \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=x+\int e^{1+e^{1+2 x^2+x^4}+2 x^2+x^4} \left (4 x+4 x^3\right ) \, dx\\ &=x+\int e^{1+e^{1+2 x^2+x^4}+2 x^2+x^4} x \left (4+4 x^2\right ) \, dx\\ &=x+\frac {1}{2} \operatorname {Subst}\left (\int e^{1+e^{1+2 x+x^2}+2 x+x^2} (4+4 x) \, dx,x,x^2\right )\\ &=x+\frac {1}{2} \operatorname {Subst}\left (\int \left (4 e^{1+e^{1+2 x+x^2}+2 x+x^2}+4 e^{1+e^{1+2 x+x^2}+2 x+x^2} x\right ) \, dx,x,x^2\right )\\ &=x+2 \operatorname {Subst}\left (\int e^{1+e^{1+2 x+x^2}+2 x+x^2} \, dx,x,x^2\right )+2 \operatorname {Subst}\left (\int e^{1+e^{1+2 x+x^2}+2 x+x^2} x \, dx,x,x^2\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.16, size = 13, normalized size = 0.87 \begin {gather*} e^{e^{\left (1+x^2\right )^2}}+x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.60, size = 50, normalized size = 3.33 \begin {gather*} {\left (x e^{\left (x^{4} + 2 \, x^{2} + 1\right )} + e^{\left (x^{4} + 2 \, x^{2} + e^{\left (x^{4} + 2 \, x^{2} + 1\right )} + 1\right )}\right )} e^{\left (-x^{4} - 2 \, x^{2} - 1\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int 4 \, {\left (x^{3} + x\right )} e^{\left (x^{4} + 2 \, x^{2} + e^{\left (x^{4} + 2 \, x^{2} + 1\right )} + 1\right )} + 1\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.08, size = 12, normalized size = 0.80
method | result | size |
risch | \(x +{\mathrm e}^{{\mathrm e}^{\left (x^{2}+1\right )^{2}}}\) | \(12\) |
default | \(x +{\mathrm e}^{{\mathrm e}^{x^{4}+2 x^{2}+1}}\) | \(15\) |
norman | \(x +{\mathrm e}^{{\mathrm e}^{x^{4}+2 x^{2}+1}}\) | \(15\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.45, size = 14, normalized size = 0.93 \begin {gather*} x + e^{\left (e^{\left (x^{4} + 2 \, x^{2} + 1\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.15, size = 14, normalized size = 0.93 \begin {gather*} x+{\mathrm {e}}^{{\mathrm {e}}^{x^4+2\,x^2+1}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.28, size = 14, normalized size = 0.93 \begin {gather*} x + e^{e^{x^{4} + 2 x^{2} + 1}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________