Optimal. Leaf size=25 \[ e^{\frac {e^{-4+\frac {x}{4}} \left (e^{20}+\frac {\log (x)}{x}\right )}{x}} \]
________________________________________________________________________________________
Rubi [F] time = 5.14, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{-4+\frac {e^{20+\frac {x}{4}} x+e^{x/4} \log (x)}{e^4 x^2}} \left (e^{x/4} \left (4+e^{20} \left (-4 x+x^2\right )\right )+e^{x/4} (-8+x) \log (x)\right )}{4 x^3} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{4} \int \frac {e^{-4+\frac {e^{20+\frac {x}{4}} x+e^{x/4} \log (x)}{e^4 x^2}} \left (e^{x/4} \left (4+e^{20} \left (-4 x+x^2\right )\right )+e^{x/4} (-8+x) \log (x)\right )}{x^3} \, dx\\ &=\frac {1}{4} \int \frac {\exp \left (-4+\frac {x}{4}+\frac {e^{20+\frac {x}{4}} x+e^{x/4} \log (x)}{e^4 x^2}\right ) \left (4-4 e^{20} x+e^{20} x^2-8 \log (x)+x \log (x)\right )}{x^3} \, dx\\ &=\frac {1}{4} \int \left (\frac {\exp \left (-4+\frac {x}{4}+\frac {e^{20+\frac {x}{4}} x+e^{x/4} \log (x)}{e^4 x^2}\right ) \left (4-4 e^{20} x+e^{20} x^2\right )}{x^3}+\frac {\exp \left (-4+\frac {x}{4}+\frac {e^{20+\frac {x}{4}} x+e^{x/4} \log (x)}{e^4 x^2}\right ) (-8+x) \log (x)}{x^3}\right ) \, dx\\ &=\frac {1}{4} \int \frac {\exp \left (-4+\frac {x}{4}+\frac {e^{20+\frac {x}{4}} x+e^{x/4} \log (x)}{e^4 x^2}\right ) \left (4-4 e^{20} x+e^{20} x^2\right )}{x^3} \, dx+\frac {1}{4} \int \frac {\exp \left (-4+\frac {x}{4}+\frac {e^{20+\frac {x}{4}} x+e^{x/4} \log (x)}{e^4 x^2}\right ) (-8+x) \log (x)}{x^3} \, dx\\ &=\frac {1}{4} \int \left (\frac {4 \exp \left (-4+\frac {x}{4}+\frac {e^{20+\frac {x}{4}} x+e^{x/4} \log (x)}{e^4 x^2}\right )}{x^3}-\frac {4 e^{16+\frac {x}{4}+\frac {e^{20+\frac {x}{4}} x+e^{x/4} \log (x)}{e^4 x^2}}}{x^2}+\frac {e^{16+\frac {x}{4}+\frac {e^{20+\frac {x}{4}} x+e^{x/4} \log (x)}{e^4 x^2}}}{x}\right ) \, dx+\frac {1}{4} \int \left (-\frac {8 \exp \left (-4+\frac {x}{4}+\frac {e^{20+\frac {x}{4}} x+e^{x/4} \log (x)}{e^4 x^2}\right ) \log (x)}{x^3}+\frac {\exp \left (-4+\frac {x}{4}+\frac {e^{20+\frac {x}{4}} x+e^{x/4} \log (x)}{e^4 x^2}\right ) \log (x)}{x^2}\right ) \, dx\\ &=\frac {1}{4} \int \frac {e^{16+\frac {x}{4}+\frac {e^{20+\frac {x}{4}} x+e^{x/4} \log (x)}{e^4 x^2}}}{x} \, dx+\frac {1}{4} \int \frac {\exp \left (-4+\frac {x}{4}+\frac {e^{20+\frac {x}{4}} x+e^{x/4} \log (x)}{e^4 x^2}\right ) \log (x)}{x^2} \, dx-2 \int \frac {\exp \left (-4+\frac {x}{4}+\frac {e^{20+\frac {x}{4}} x+e^{x/4} \log (x)}{e^4 x^2}\right ) \log (x)}{x^3} \, dx+\int \frac {\exp \left (-4+\frac {x}{4}+\frac {e^{20+\frac {x}{4}} x+e^{x/4} \log (x)}{e^4 x^2}\right )}{x^3} \, dx-\int \frac {e^{16+\frac {x}{4}+\frac {e^{20+\frac {x}{4}} x+e^{x/4} \log (x)}{e^4 x^2}}}{x^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.95, size = 31, normalized size = 1.24 \begin {gather*} e^{\frac {e^{16+\frac {x}{4}}}{x}} x^{\frac {e^{-4+\frac {x}{4}}}{x^2}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.57, size = 37, normalized size = 1.48 \begin {gather*} e^{\left (-\frac {{\left (4 \, x^{2} e^{24} - x e^{\left (\frac {1}{4} \, x + 40\right )} - e^{\left (\frac {1}{4} \, x + 20\right )} \log \relax (x)\right )} e^{\left (-24\right )}}{x^{2}} + 4\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.22, size = 24, normalized size = 0.96 \begin {gather*} e^{\left (\frac {e^{\left (\frac {1}{4} \, x + 16\right )}}{x} + \frac {e^{\left (\frac {1}{4} \, x - 4\right )} \log \relax (x)}{x^{2}}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 25, normalized size = 1.00
method | result | size |
risch | \(x^{\frac {{\mathrm e}^{-4+\frac {x}{4}}}{x^{2}}} {\mathrm e}^{\frac {{\mathrm e}^{\frac {x}{4}+16}}{x}}\) | \(25\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.57, size = 24, normalized size = 0.96 \begin {gather*} e^{\left (\frac {e^{\left (\frac {1}{4} \, x + 16\right )}}{x} + \frac {e^{\left (\frac {1}{4} \, x - 4\right )} \log \relax (x)}{x^{2}}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.26, size = 24, normalized size = 0.96 \begin {gather*} x^{\frac {{\mathrm {e}}^{\frac {x}{4}-4}}{x^2}}\,{\mathrm {e}}^{\frac {{\mathrm {e}}^{x/4}\,{\mathrm {e}}^{16}}{x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.60, size = 26, normalized size = 1.04 \begin {gather*} e^{\frac {x e^{20} e^{\frac {x}{4}} + e^{\frac {x}{4}} \log {\relax (x )}}{x^{2} e^{4}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________