Optimal. Leaf size=23 \[ e^{e^{12}+\frac {1}{x}} x^2 \log \left (x+x^4-\log (x)\right ) \]
________________________________________________________________________________________
Rubi [F] time = 1.20, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{\frac {1+e^{12} x}{x}} \left (x-x^2-4 x^5\right )+\left (e^{\frac {1+e^{12} x}{x}} \left (x-2 x^2+x^4-2 x^5\right )+e^{\frac {1+e^{12} x}{x}} (-1+2 x) \log (x)\right ) \log \left (x+x^4-\log (x)\right )}{-x-x^4+\log (x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{e^{12}+\frac {1}{x}} \left (x \left (-1+x+4 x^4\right )+(-1+2 x) \left (x+x^4-\log (x)\right ) \log \left (x+x^4-\log (x)\right )\right )}{x+x^4-\log (x)} \, dx\\ &=\int \left (\frac {e^{e^{12}+\frac {1}{x}} x \left (-1+x+4 x^4\right )}{x+x^4-\log (x)}+e^{e^{12}+\frac {1}{x}} (-1+2 x) \log \left (x+x^4-\log (x)\right )\right ) \, dx\\ &=\int \frac {e^{e^{12}+\frac {1}{x}} x \left (-1+x+4 x^4\right )}{x+x^4-\log (x)} \, dx+\int e^{e^{12}+\frac {1}{x}} (-1+2 x) \log \left (x+x^4-\log (x)\right ) \, dx\\ &=\int \left (-\frac {e^{e^{12}+\frac {1}{x}} x}{x+x^4-\log (x)}+\frac {e^{e^{12}+\frac {1}{x}} x^2}{x+x^4-\log (x)}+\frac {4 e^{e^{12}+\frac {1}{x}} x^5}{x+x^4-\log (x)}\right ) \, dx+\int \left (-e^{e^{12}+\frac {1}{x}} \log \left (x+x^4-\log (x)\right )+2 e^{e^{12}+\frac {1}{x}} x \log \left (x+x^4-\log (x)\right )\right ) \, dx\\ &=2 \int e^{e^{12}+\frac {1}{x}} x \log \left (x+x^4-\log (x)\right ) \, dx+4 \int \frac {e^{e^{12}+\frac {1}{x}} x^5}{x+x^4-\log (x)} \, dx-\int \frac {e^{e^{12}+\frac {1}{x}} x}{x+x^4-\log (x)} \, dx+\int \frac {e^{e^{12}+\frac {1}{x}} x^2}{x+x^4-\log (x)} \, dx-\int e^{e^{12}+\frac {1}{x}} \log \left (x+x^4-\log (x)\right ) \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.27, size = 23, normalized size = 1.00 \begin {gather*} e^{e^{12}+\frac {1}{x}} x^2 \log \left (x+x^4-\log (x)\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.64, size = 25, normalized size = 1.09 \begin {gather*} x^{2} e^{\left (\frac {x e^{12} + 1}{x}\right )} \log \left (x^{4} + x - \log \relax (x)\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.33, size = 25, normalized size = 1.09 \begin {gather*} x^{2} e^{\left (\frac {x e^{12} + 1}{x}\right )} \log \left (x^{4} + x - \log \relax (x)\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.03, size = 26, normalized size = 1.13
method | result | size |
risch | \(x^{2} {\mathrm e}^{\frac {x \,{\mathrm e}^{12}+1}{x}} \ln \left (-\ln \relax (x )+x^{4}+x \right )\) | \(26\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.43, size = 21, normalized size = 0.91 \begin {gather*} x^{2} e^{\left (\frac {1}{x} + e^{12}\right )} \log \left (x^{4} + x - \log \relax (x)\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.04 \begin {gather*} -\int \frac {\ln \left (x-\ln \relax (x)+x^4\right )\,\left ({\mathrm {e}}^{\frac {x\,{\mathrm {e}}^{12}+1}{x}}\,\left (-2\,x^5+x^4-2\,x^2+x\right )+{\mathrm {e}}^{\frac {x\,{\mathrm {e}}^{12}+1}{x}}\,\ln \relax (x)\,\left (2\,x-1\right )\right )-{\mathrm {e}}^{\frac {x\,{\mathrm {e}}^{12}+1}{x}}\,\left (4\,x^5+x^2-x\right )}{x-\ln \relax (x)+x^4} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 2.39, size = 22, normalized size = 0.96 \begin {gather*} x^{2} e^{\frac {x e^{12} + 1}{x}} \log {\left (x^{4} + x - \log {\relax (x )} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________