Optimal. Leaf size=24 \[ \frac {x \log \left (-\frac {x}{\log (5)}\right )}{5-\left (1+\frac {x}{4}\right ) x} \]
________________________________________________________________________________________
Rubi [B] time = 0.83, antiderivative size = 238, normalized size of antiderivative = 9.92, number of steps used = 34, number of rules used = 10, integrand size = 47, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.213, Rules used = {6742, 618, 206, 2357, 2314, 31, 2317, 2391, 2316, 2315} \begin {gather*} -\frac {5 \log \left (x+2 \left (1-\sqrt {6}\right )\right )}{6 \left (1-\sqrt {6}\right )}-\frac {1}{6} \log \left (x+2 \left (1-\sqrt {6}\right )\right )-\frac {5 \log \left (x+2 \left (1+\sqrt {6}\right )\right )}{6 \left (1+\sqrt {6}\right )}-\frac {1}{6} \log \left (x+2 \left (1+\sqrt {6}\right )\right )+\frac {5 x \log \left (-\frac {x}{\log (5)}\right )}{6 \left (1-\sqrt {6}\right ) \left (x+2 \left (1-\sqrt {6}\right )\right )}+\frac {x \log \left (-\frac {x}{\log (5)}\right )}{6 \left (x+2 \left (1-\sqrt {6}\right )\right )}+\frac {5 x \log \left (-\frac {x}{\log (5)}\right )}{6 \left (1+\sqrt {6}\right ) \left (x+2 \left (1+\sqrt {6}\right )\right )}+\frac {x \log \left (-\frac {x}{\log (5)}\right )}{6 \left (x+2 \left (1+\sqrt {6}\right )\right )}+\sqrt {\frac {2}{3}} \tanh ^{-1}\left (\frac {x+2}{2 \sqrt {6}}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 31
Rule 206
Rule 618
Rule 2314
Rule 2315
Rule 2316
Rule 2317
Rule 2357
Rule 2391
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (-\frac {4}{-20+4 x+x^2}+\frac {4 \left (20+x^2\right ) \log \left (-\frac {x}{\log (5)}\right )}{\left (-20+4 x+x^2\right )^2}\right ) \, dx\\ &=-\left (4 \int \frac {1}{-20+4 x+x^2} \, dx\right )+4 \int \frac {\left (20+x^2\right ) \log \left (-\frac {x}{\log (5)}\right )}{\left (-20+4 x+x^2\right )^2} \, dx\\ &=4 \int \left (-\frac {4 (-10+x) \log \left (-\frac {x}{\log (5)}\right )}{\left (-20+4 x+x^2\right )^2}+\frac {\log \left (-\frac {x}{\log (5)}\right )}{-20+4 x+x^2}\right ) \, dx+8 \operatorname {Subst}\left (\int \frac {1}{96-x^2} \, dx,x,4+2 x\right )\\ &=\sqrt {\frac {2}{3}} \tanh ^{-1}\left (\frac {2+x}{2 \sqrt {6}}\right )+4 \int \frac {\log \left (-\frac {x}{\log (5)}\right )}{-20+4 x+x^2} \, dx-16 \int \frac {(-10+x) \log \left (-\frac {x}{\log (5)}\right )}{\left (-20+4 x+x^2\right )^2} \, dx\\ &=\sqrt {\frac {2}{3}} \tanh ^{-1}\left (\frac {2+x}{2 \sqrt {6}}\right )+4 \int \left (-\frac {\log \left (-\frac {x}{\log (5)}\right )}{2 \sqrt {6} \left (-4+4 \sqrt {6}-2 x\right )}-\frac {\log \left (-\frac {x}{\log (5)}\right )}{2 \sqrt {6} \left (4+4 \sqrt {6}+2 x\right )}\right ) \, dx-16 \int \left (-\frac {10 \log \left (-\frac {x}{\log (5)}\right )}{\left (-20+4 x+x^2\right )^2}+\frac {x \log \left (-\frac {x}{\log (5)}\right )}{\left (-20+4 x+x^2\right )^2}\right ) \, dx\\ &=\sqrt {\frac {2}{3}} \tanh ^{-1}\left (\frac {2+x}{2 \sqrt {6}}\right )-16 \int \frac {x \log \left (-\frac {x}{\log (5)}\right )}{\left (-20+4 x+x^2\right )^2} \, dx+160 \int \frac {\log \left (-\frac {x}{\log (5)}\right )}{\left (-20+4 x+x^2\right )^2} \, dx-\sqrt {\frac {2}{3}} \int \frac {\log \left (-\frac {x}{\log (5)}\right )}{-4+4 \sqrt {6}-2 x} \, dx-\sqrt {\frac {2}{3}} \int \frac {\log \left (-\frac {x}{\log (5)}\right )}{4+4 \sqrt {6}+2 x} \, dx\\ &=\sqrt {\frac {2}{3}} \tanh ^{-1}\left (\frac {2+x}{2 \sqrt {6}}\right )-\frac {\log \left (4 \left (1+\sqrt {6}\right )+2 x\right ) \log \left (\frac {2 \left (1+\sqrt {6}\right )}{\log (5)}\right )}{\sqrt {6}}+\frac {\log \left (1+\frac {x}{2 \left (1-\sqrt {6}\right )}\right ) \log \left (-\frac {x}{\log (5)}\right )}{\sqrt {6}}-16 \int \left (\frac {\left (-4+4 \sqrt {6}\right ) \log \left (-\frac {x}{\log (5)}\right )}{48 \left (-4+4 \sqrt {6}-2 x\right )^2}-\frac {\log \left (-\frac {x}{\log (5)}\right )}{48 \sqrt {6} \left (-4+4 \sqrt {6}-2 x\right )}+\frac {\left (-4-4 \sqrt {6}\right ) \log \left (-\frac {x}{\log (5)}\right )}{48 \left (4+4 \sqrt {6}+2 x\right )^2}-\frac {\log \left (-\frac {x}{\log (5)}\right )}{48 \sqrt {6} \left (4+4 \sqrt {6}+2 x\right )}\right ) \, dx+160 \int \left (\frac {\log \left (-\frac {x}{\log (5)}\right )}{24 \left (-4+4 \sqrt {6}-2 x\right )^2}+\frac {\log \left (-\frac {x}{\log (5)}\right )}{96 \sqrt {6} \left (-4+4 \sqrt {6}-2 x\right )}+\frac {\log \left (-\frac {x}{\log (5)}\right )}{24 \left (4+4 \sqrt {6}+2 x\right )^2}+\frac {\log \left (-\frac {x}{\log (5)}\right )}{96 \sqrt {6} \left (4+4 \sqrt {6}+2 x\right )}\right ) \, dx-\sqrt {\frac {2}{3}} \int \frac {\log \left (-\frac {2 x}{4+4 \sqrt {6}}\right )}{4+4 \sqrt {6}+2 x} \, dx-\frac {\int \frac {\log \left (1-\frac {2 x}{-4+4 \sqrt {6}}\right )}{x} \, dx}{\sqrt {6}}\\ &=\sqrt {\frac {2}{3}} \tanh ^{-1}\left (\frac {2+x}{2 \sqrt {6}}\right )-\frac {\log \left (4 \left (1+\sqrt {6}\right )+2 x\right ) \log \left (\frac {2 \left (1+\sqrt {6}\right )}{\log (5)}\right )}{\sqrt {6}}+\frac {\log \left (1+\frac {x}{2 \left (1-\sqrt {6}\right )}\right ) \log \left (-\frac {x}{\log (5)}\right )}{\sqrt {6}}+\frac {\text {Li}_2\left (-\frac {x}{2 \left (1-\sqrt {6}\right )}\right )}{\sqrt {6}}+\frac {\text {Li}_2\left (1+\frac {x}{2 \left (1+\sqrt {6}\right )}\right )}{\sqrt {6}}+\frac {20}{3} \int \frac {\log \left (-\frac {x}{\log (5)}\right )}{\left (-4+4 \sqrt {6}-2 x\right )^2} \, dx+\frac {20}{3} \int \frac {\log \left (-\frac {x}{\log (5)}\right )}{\left (4+4 \sqrt {6}+2 x\right )^2} \, dx+\frac {\int \frac {\log \left (-\frac {x}{\log (5)}\right )}{-4+4 \sqrt {6}-2 x} \, dx}{3 \sqrt {6}}+\frac {\int \frac {\log \left (-\frac {x}{\log (5)}\right )}{4+4 \sqrt {6}+2 x} \, dx}{3 \sqrt {6}}+\frac {5 \int \frac {\log \left (-\frac {x}{\log (5)}\right )}{-4+4 \sqrt {6}-2 x} \, dx}{3 \sqrt {6}}+\frac {5 \int \frac {\log \left (-\frac {x}{\log (5)}\right )}{4+4 \sqrt {6}+2 x} \, dx}{3 \sqrt {6}}+\frac {1}{3} \left (4 \left (1-\sqrt {6}\right )\right ) \int \frac {\log \left (-\frac {x}{\log (5)}\right )}{\left (-4+4 \sqrt {6}-2 x\right )^2} \, dx+\frac {1}{3} \left (4 \left (1+\sqrt {6}\right )\right ) \int \frac {\log \left (-\frac {x}{\log (5)}\right )}{\left (4+4 \sqrt {6}+2 x\right )^2} \, dx\\ &=\sqrt {\frac {2}{3}} \tanh ^{-1}\left (\frac {2+x}{2 \sqrt {6}}\right )+\frac {x \log \left (-\frac {x}{\log (5)}\right )}{6 \left (2 \left (1-\sqrt {6}\right )+x\right )}+\frac {5 x \log \left (-\frac {x}{\log (5)}\right )}{6 \left (1-\sqrt {6}\right ) \left (2 \left (1-\sqrt {6}\right )+x\right )}+\frac {x \log \left (-\frac {x}{\log (5)}\right )}{6 \left (2 \left (1+\sqrt {6}\right )+x\right )}+\frac {5 x \log \left (-\frac {x}{\log (5)}\right )}{6 \left (1+\sqrt {6}\right ) \left (2 \left (1+\sqrt {6}\right )+x\right )}+\frac {\text {Li}_2\left (-\frac {x}{2 \left (1-\sqrt {6}\right )}\right )}{\sqrt {6}}+\frac {\text {Li}_2\left (1+\frac {x}{2 \left (1+\sqrt {6}\right )}\right )}{\sqrt {6}}+\frac {1}{3} \int \frac {1}{-4+4 \sqrt {6}-2 x} \, dx-\frac {1}{3} \int \frac {1}{4+4 \sqrt {6}+2 x} \, dx+\frac {\int \frac {\log \left (1-\frac {2 x}{-4+4 \sqrt {6}}\right )}{x} \, dx}{6 \sqrt {6}}+\frac {\int \frac {\log \left (-\frac {2 x}{4+4 \sqrt {6}}\right )}{4+4 \sqrt {6}+2 x} \, dx}{3 \sqrt {6}}+\frac {5 \int \frac {\log \left (1-\frac {2 x}{-4+4 \sqrt {6}}\right )}{x} \, dx}{6 \sqrt {6}}+\frac {5 \int \frac {\log \left (-\frac {2 x}{4+4 \sqrt {6}}\right )}{4+4 \sqrt {6}+2 x} \, dx}{3 \sqrt {6}}-\frac {5 \int \frac {1}{4+4 \sqrt {6}+2 x} \, dx}{3 \left (1+\sqrt {6}\right )}-\frac {20 \int \frac {1}{-4+4 \sqrt {6}-2 x} \, dx}{3 \left (-4+4 \sqrt {6}\right )}\\ &=\sqrt {\frac {2}{3}} \tanh ^{-1}\left (\frac {2+x}{2 \sqrt {6}}\right )-\frac {1}{6} \log \left (2 \left (1-\sqrt {6}\right )+x\right )-\frac {5 \log \left (2 \left (1-\sqrt {6}\right )+x\right )}{6 \left (1-\sqrt {6}\right )}-\frac {1}{6} \log \left (2 \left (1+\sqrt {6}\right )+x\right )-\frac {5 \log \left (2 \left (1+\sqrt {6}\right )+x\right )}{6 \left (1+\sqrt {6}\right )}+\frac {x \log \left (-\frac {x}{\log (5)}\right )}{6 \left (2 \left (1-\sqrt {6}\right )+x\right )}+\frac {5 x \log \left (-\frac {x}{\log (5)}\right )}{6 \left (1-\sqrt {6}\right ) \left (2 \left (1-\sqrt {6}\right )+x\right )}+\frac {x \log \left (-\frac {x}{\log (5)}\right )}{6 \left (2 \left (1+\sqrt {6}\right )+x\right )}+\frac {5 x \log \left (-\frac {x}{\log (5)}\right )}{6 \left (1+\sqrt {6}\right ) \left (2 \left (1+\sqrt {6}\right )+x\right )}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.34, size = 21, normalized size = 0.88 \begin {gather*} -\frac {4 x \log \left (-\frac {x}{\log (5)}\right )}{-20+4 x+x^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.74, size = 21, normalized size = 0.88 \begin {gather*} -\frac {4 \, x \log \left (-\frac {x}{\log \relax (5)}\right )}{x^{2} + 4 \, x - 20} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.14, size = 34, normalized size = 1.42 \begin {gather*} -\frac {4 \, x \log \left (-x\right )}{x^{2} + 4 \, x - 20} + \frac {4 \, x \log \left (\log \relax (5)\right )}{x^{2} + 4 \, x - 20} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.07, size = 22, normalized size = 0.92
method | result | size |
norman | \(-\frac {4 x \ln \left (-\frac {x}{\ln \relax (5)}\right )}{x^{2}+4 x -20}\) | \(22\) |
risch | \(-\frac {4 x \ln \left (-\frac {x}{\ln \relax (5)}\right )}{x^{2}+4 x -20}\) | \(22\) |
derivativedivides | \(-\ln \relax (5) \left (-\frac {\ln \left (-\frac {x}{\ln \relax (5)}\right ) \left (\ln \left (-\frac {-x -2 \sqrt {6}-2}{2 \left (\sqrt {6}+1\right )}\right ) \sqrt {6}\, x^{2}-\ln \left (\frac {-x +2 \sqrt {6}-2}{2 \sqrt {6}-2}\right ) \sqrt {6}\, x^{2}+4 \ln \left (-\frac {-x -2 \sqrt {6}-2}{2 \left (\sqrt {6}+1\right )}\right ) \sqrt {6}\, x -4 \ln \left (\frac {-x +2 \sqrt {6}-2}{2 \sqrt {6}-2}\right ) \sqrt {6}\, x -24 x -20 \sqrt {6}\, \ln \left (-\frac {-x -2 \sqrt {6}-2}{2 \left (\sqrt {6}+1\right )}\right )+20 \sqrt {6}\, \ln \left (\frac {-x +2 \sqrt {6}-2}{2 \sqrt {6}-2}\right )\right )}{6 \left (x^{2}+4 x -20\right ) \ln \relax (5)}+\frac {\sqrt {6}\, \ln \left (-\frac {x}{\ln \relax (5)}\right ) \left (\ln \left (-\frac {-x -2 \sqrt {6}-2}{2 \left (\sqrt {6}+1\right )}\right )-\ln \left (\frac {-x +2 \sqrt {6}-2}{2 \sqrt {6}-2}\right )\right )}{6 \ln \relax (5)}\right )\) | \(251\) |
default | \(-\ln \relax (5) \left (-\frac {\ln \left (-\frac {x}{\ln \relax (5)}\right ) \left (\ln \left (-\frac {-x -2 \sqrt {6}-2}{2 \left (\sqrt {6}+1\right )}\right ) \sqrt {6}\, x^{2}-\ln \left (\frac {-x +2 \sqrt {6}-2}{2 \sqrt {6}-2}\right ) \sqrt {6}\, x^{2}+4 \ln \left (-\frac {-x -2 \sqrt {6}-2}{2 \left (\sqrt {6}+1\right )}\right ) \sqrt {6}\, x -4 \ln \left (\frac {-x +2 \sqrt {6}-2}{2 \sqrt {6}-2}\right ) \sqrt {6}\, x -24 x -20 \sqrt {6}\, \ln \left (-\frac {-x -2 \sqrt {6}-2}{2 \left (\sqrt {6}+1\right )}\right )+20 \sqrt {6}\, \ln \left (\frac {-x +2 \sqrt {6}-2}{2 \sqrt {6}-2}\right )\right )}{6 \left (x^{2}+4 x -20\right ) \ln \relax (5)}+\frac {\sqrt {6}\, \ln \left (-\frac {x}{\ln \relax (5)}\right ) \left (\ln \left (-\frac {-x -2 \sqrt {6}-2}{2 \left (\sqrt {6}+1\right )}\right )-\ln \left (\frac {-x +2 \sqrt {6}-2}{2 \sqrt {6}-2}\right )\right )}{6 \ln \relax (5)}\right )\) | \(251\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.49, size = 73, normalized size = 3.04 \begin {gather*} -\frac {4 \, {\left (x \log \left (-x\right ) - x \log \left (\log \relax (5)\right )\right )}}{x^{2} + 4 \, x - 20} + \frac {7 \, x - 10}{3 \, {\left (x^{2} + 4 \, x - 20\right )}} - \frac {5 \, {\left (x + 2\right )}}{3 \, {\left (x^{2} + 4 \, x - 20\right )}} - \frac {2 \, {\left (x - 10\right )}}{3 \, {\left (x^{2} + 4 \, x - 20\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.46, size = 23, normalized size = 0.96 \begin {gather*} -\frac {4\,x\,\left (\ln \left (-x\right )-\ln \left (\ln \relax (5)\right )\right )}{x^2+4\,x-20} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.14, size = 20, normalized size = 0.83 \begin {gather*} - \frac {4 x \log {\left (- \frac {x}{\log {\relax (5 )}} \right )}}{x^{2} + 4 x - 20} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________