Optimal. Leaf size=19 \[ x \log \left (-\frac {3 x}{4}+\log ^2\left (\frac {3}{16 x}\right )\right ) \]
________________________________________________________________________________________
Rubi [F] time = 0.26, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-3 x-8 \log \left (\frac {3}{16 x}\right )+\left (-3 x+4 \log ^2\left (\frac {3}{16 x}\right )\right ) \log \left (\frac {1}{4} \left (-3 x+4 \log ^2\left (\frac {3}{16 x}\right )\right )\right )}{-3 x+4 \log ^2\left (\frac {3}{16 x}\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {3 x+8 \log \left (\frac {3}{16 x}\right )}{3 x-4 \log ^2\left (\frac {3}{16 x}\right )}+\log \left (-\frac {3 x}{4}+\log ^2\left (\frac {3}{16 x}\right )\right )\right ) \, dx\\ &=\int \frac {3 x+8 \log \left (\frac {3}{16 x}\right )}{3 x-4 \log ^2\left (\frac {3}{16 x}\right )} \, dx+\int \log \left (-\frac {3 x}{4}+\log ^2\left (\frac {3}{16 x}\right )\right ) \, dx\\ &=\int \left (\frac {3 x}{3 x-4 \log ^2\left (\frac {3}{16 x}\right )}-\frac {8 \log \left (\frac {3}{16 x}\right )}{-3 x+4 \log ^2\left (\frac {3}{16 x}\right )}\right ) \, dx+\int \log \left (-\frac {3 x}{4}+\log ^2\left (\frac {3}{16 x}\right )\right ) \, dx\\ &=3 \int \frac {x}{3 x-4 \log ^2\left (\frac {3}{16 x}\right )} \, dx-8 \int \frac {\log \left (\frac {3}{16 x}\right )}{-3 x+4 \log ^2\left (\frac {3}{16 x}\right )} \, dx+\int \log \left (-\frac {3 x}{4}+\log ^2\left (\frac {3}{16 x}\right )\right ) \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.17, size = 19, normalized size = 1.00 \begin {gather*} x \log \left (-\frac {3 x}{4}+\log ^2\left (\frac {3}{16 x}\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.52, size = 15, normalized size = 0.79 \begin {gather*} x \log \left (\log \left (\frac {3}{16 \, x}\right )^{2} - \frac {3}{4} \, x\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.42, size = 23, normalized size = 1.21 \begin {gather*} -2 \, x \log \relax (2) + x \log \left (4 \, \log \left (\frac {3}{16 \, x}\right )^{2} - 3 \, x\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.12, size = 16, normalized size = 0.84
method | result | size |
norman | \(x \ln \left (\ln \left (\frac {3}{16 x}\right )^{2}-\frac {3 x}{4}\right )\) | \(16\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.48, size = 48, normalized size = 2.53 \begin {gather*} -2 \, x \log \relax (2) + x \log \left (4 \, \log \relax (3)^{2} - 32 \, \log \relax (3) \log \relax (2) + 64 \, \log \relax (2)^{2} - 8 \, {\left (\log \relax (3) - 4 \, \log \relax (2)\right )} \log \relax (x) + 4 \, \log \relax (x)^{2} - 3 \, x\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.44, size = 15, normalized size = 0.79 \begin {gather*} x\,\ln \left ({\ln \left (\frac {3}{16\,x}\right )}^2-\frac {3\,x}{4}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.41, size = 15, normalized size = 0.79 \begin {gather*} x \log {\left (- \frac {3 x}{4} + \log {\left (\frac {3}{16 x} \right )}^{2} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________