Optimal. Leaf size=26 \[ \frac {25 \log (5) (x+9 \log (5))}{\log ^2\left (\frac {3}{1+\frac {e^x}{4}}\right )} \]
________________________________________________________________________________________
Rubi [F] time = 1.11, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^x \left (50 x \log (5)+450 \log ^2(5)\right )+\left (100 \log (5)+25 e^x \log (5)\right ) \log \left (\frac {12}{4+e^x}\right )}{\left (4+e^x\right ) \log ^3\left (\frac {12}{4+e^x}\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (-\frac {200 \log (5) (x+9 \log (5))}{\left (4+e^x\right ) \log ^3\left (\frac {12}{4+e^x}\right )}+\frac {25 \log (5) \left (2 x+18 \log (5)+\log \left (\frac {12}{4+e^x}\right )\right )}{\log ^3\left (\frac {12}{4+e^x}\right )}\right ) \, dx\\ &=(25 \log (5)) \int \frac {2 x+18 \log (5)+\log \left (\frac {12}{4+e^x}\right )}{\log ^3\left (\frac {12}{4+e^x}\right )} \, dx-(200 \log (5)) \int \frac {x+9 \log (5)}{\left (4+e^x\right ) \log ^3\left (\frac {12}{4+e^x}\right )} \, dx\\ &=(25 \log (5)) \int \left (\frac {2 (x+9 \log (5))}{\log ^3\left (\frac {12}{4+e^x}\right )}+\frac {1}{\log ^2\left (\frac {12}{4+e^x}\right )}\right ) \, dx-(200 \log (5)) \int \left (\frac {x}{\left (4+e^x\right ) \log ^3\left (\frac {12}{4+e^x}\right )}+\frac {9 \log (5)}{\left (4+e^x\right ) \log ^3\left (\frac {12}{4+e^x}\right )}\right ) \, dx\\ &=(25 \log (5)) \int \frac {1}{\log ^2\left (\frac {12}{4+e^x}\right )} \, dx+(50 \log (5)) \int \frac {x+9 \log (5)}{\log ^3\left (\frac {12}{4+e^x}\right )} \, dx-(200 \log (5)) \int \frac {x}{\left (4+e^x\right ) \log ^3\left (\frac {12}{4+e^x}\right )} \, dx-\left (1800 \log ^2(5)\right ) \int \frac {1}{\left (4+e^x\right ) \log ^3\left (\frac {12}{4+e^x}\right )} \, dx\\ &=(25 \log (5)) \operatorname {Subst}\left (\int \frac {1}{x \log ^2\left (\frac {12}{4+x}\right )} \, dx,x,e^x\right )+(50 \log (5)) \int \left (\frac {x}{\log ^3\left (\frac {12}{4+e^x}\right )}+\frac {9 \log (5)}{\log ^3\left (\frac {12}{4+e^x}\right )}\right ) \, dx-(200 \log (5)) \int \frac {x}{\left (4+e^x\right ) \log ^3\left (\frac {12}{4+e^x}\right )} \, dx-\left (1800 \log ^2(5)\right ) \operatorname {Subst}\left (\int \frac {1}{x (4+x) \log ^3\left (\frac {12}{4+x}\right )} \, dx,x,e^x\right )\\ &=(25 \log (5)) \operatorname {Subst}\left (\int \frac {1}{x \log ^2\left (\frac {12}{4+x}\right )} \, dx,x,e^x\right )+(50 \log (5)) \int \frac {x}{\log ^3\left (\frac {12}{4+e^x}\right )} \, dx-(200 \log (5)) \int \frac {x}{\left (4+e^x\right ) \log ^3\left (\frac {12}{4+e^x}\right )} \, dx+\left (450 \log ^2(5)\right ) \int \frac {1}{\log ^3\left (\frac {12}{4+e^x}\right )} \, dx-\left (1800 \log ^2(5)\right ) \operatorname {Subst}\left (\int \left (\frac {1}{4 x \log ^3\left (\frac {12}{4+x}\right )}-\frac {1}{4 (4+x) \log ^3\left (\frac {12}{4+x}\right )}\right ) \, dx,x,e^x\right )\\ &=(25 \log (5)) \operatorname {Subst}\left (\int \frac {1}{x \log ^2\left (\frac {12}{4+x}\right )} \, dx,x,e^x\right )+(50 \log (5)) \int \frac {x}{\log ^3\left (\frac {12}{4+e^x}\right )} \, dx-(200 \log (5)) \int \frac {x}{\left (4+e^x\right ) \log ^3\left (\frac {12}{4+e^x}\right )} \, dx+\left (450 \log ^2(5)\right ) \operatorname {Subst}\left (\int \frac {1}{(4+x) \log ^3\left (\frac {12}{4+x}\right )} \, dx,x,e^x\right )\\ &=(25 \log (5)) \operatorname {Subst}\left (\int \frac {1}{x \log ^2\left (\frac {12}{4+x}\right )} \, dx,x,e^x\right )+(50 \log (5)) \int \frac {x}{\log ^3\left (\frac {12}{4+e^x}\right )} \, dx-(200 \log (5)) \int \frac {x}{\left (4+e^x\right ) \log ^3\left (\frac {12}{4+e^x}\right )} \, dx+\left (450 \log ^2(5)\right ) \operatorname {Subst}\left (\int \frac {1}{x \log ^3\left (\frac {12}{x}\right )} \, dx,x,4+e^x\right )\\ &=(25 \log (5)) \operatorname {Subst}\left (\int \frac {1}{x \log ^2\left (\frac {12}{4+x}\right )} \, dx,x,e^x\right )+(50 \log (5)) \int \frac {x}{\log ^3\left (\frac {12}{4+e^x}\right )} \, dx-(200 \log (5)) \int \frac {x}{\left (4+e^x\right ) \log ^3\left (\frac {12}{4+e^x}\right )} \, dx-\left (450 \log ^2(5)\right ) \operatorname {Subst}\left (\int \frac {1}{x^3} \, dx,x,\log \left (\frac {12}{4+e^x}\right )\right )\\ &=\frac {225 \log ^2(5)}{\log ^2\left (\frac {12}{4+e^x}\right )}+(25 \log (5)) \operatorname {Subst}\left (\int \frac {1}{x \log ^2\left (\frac {12}{4+x}\right )} \, dx,x,e^x\right )+(50 \log (5)) \int \frac {x}{\log ^3\left (\frac {12}{4+e^x}\right )} \, dx-(200 \log (5)) \int \frac {x}{\left (4+e^x\right ) \log ^3\left (\frac {12}{4+e^x}\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.30, size = 22, normalized size = 0.85 \begin {gather*} \frac {25 \log (5) (x+9 \log (5))}{\log ^2\left (\frac {12}{4+e^x}\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.56, size = 24, normalized size = 0.92 \begin {gather*} \frac {25 \, {\left (x \log \relax (5) + 9 \, \log \relax (5)^{2}\right )}}{\log \left (\frac {12}{e^{x} + 4}\right )^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.19, size = 36, normalized size = 1.38 \begin {gather*} \frac {25 \, {\left (x \log \relax (5) + 9 \, \log \relax (5)^{2}\right )}}{\log \left (12\right )^{2} - 2 \, \log \left (12\right ) \log \left (e^{x} + 4\right ) + \log \left (e^{x} + 4\right )^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.22, size = 25, normalized size = 0.96
method | result | size |
default | \(\frac {25 x \ln \relax (5)+225 \ln \relax (5)^{2}}{\ln \left (\frac {12}{{\mathrm e}^{x}+4}\right )^{2}}\) | \(25\) |
norman | \(\frac {25 x \ln \relax (5)+225 \ln \relax (5)^{2}}{\ln \left (\frac {12}{{\mathrm e}^{x}+4}\right )^{2}}\) | \(25\) |
risch | \(-\frac {100 \ln \relax (5) \left (9 \ln \relax (5)+x \right )}{\left (2 i \ln \relax (3)+4 i \ln \relax (2)-2 i \ln \left ({\mathrm e}^{x}+4\right )\right )^{2}}\) | \(32\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.49, size = 92, normalized size = 3.54 \begin {gather*} \frac {25 \, x \log \relax (5)}{\log \relax (3)^{2} + 4 \, \log \relax (3) \log \relax (2) + 4 \, \log \relax (2)^{2} - 2 \, {\left (\log \relax (3) + 2 \, \log \relax (2)\right )} \log \left (e^{x} + 4\right ) + \log \left (e^{x} + 4\right )^{2}} + \frac {225 \, \log \relax (5)^{2}}{\log \relax (3)^{2} + 4 \, \log \relax (3) \log \relax (2) + 4 \, \log \relax (2)^{2} - 2 \, {\left (\log \relax (3) + 2 \, \log \relax (2)\right )} \log \left (e^{x} + 4\right ) + \log \left (e^{x} + 4\right )^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.26, size = 21, normalized size = 0.81 \begin {gather*} \frac {25\,\ln \relax (5)\,\left (x+9\,\ln \relax (5)\right )}{{\ln \left (\frac {12}{{\mathrm {e}}^x+4}\right )}^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.15, size = 22, normalized size = 0.85 \begin {gather*} \frac {25 x \log {\relax (5 )} + 225 \log {\relax (5 )}^{2}}{\log {\left (\frac {12}{e^{x} + 4} \right )}^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________