Optimal. Leaf size=19 \[ \frac {4}{-8 e^{e^3+x} x^2+\log (16)} \]
________________________________________________________________________________________
Rubi [A] time = 0.64, antiderivative size = 21, normalized size of antiderivative = 1.11, number of steps used = 4, number of rules used = 4, integrand size = 54, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.074, Rules used = {1593, 6688, 12, 6686} \begin {gather*} -\frac {4}{8 e^{x+e^3} x^2-\log (16)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 1593
Rule 6686
Rule 6688
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{e^3+x} x (64+32 x)}{64 e^{2 e^3+2 x} x^4-16 e^{e^3+x} x^2 \log (16)+\log ^2(16)} \, dx\\ &=\int \frac {32 e^{e^3+x} x (2+x)}{\left (8 e^{e^3+x} x^2-\log (16)\right )^2} \, dx\\ &=32 \int \frac {e^{e^3+x} x (2+x)}{\left (8 e^{e^3+x} x^2-\log (16)\right )^2} \, dx\\ &=-\frac {4}{8 e^{e^3+x} x^2-\log (16)}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.06, size = 19, normalized size = 1.00 \begin {gather*} \frac {4}{-8 e^{e^3+x} x^2+\log (16)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.00, size = 19, normalized size = 1.00 \begin {gather*} -\frac {1}{2 \, x^{2} e^{\left (x + e^{3}\right )} - \log \relax (2)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.13, size = 19, normalized size = 1.00 \begin {gather*} -\frac {1}{2 \, x^{2} e^{\left (x + e^{3}\right )} - \log \relax (2)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.35, size = 16, normalized size = 0.84
method | result | size |
norman | \(\frac {1}{-2 x^{2} {\mathrm e}^{{\mathrm e}^{3}+x}+\ln \relax (2)}\) | \(16\) |
risch | \(\frac {1}{-2 x^{2} {\mathrm e}^{{\mathrm e}^{3}+x}+\ln \relax (2)}\) | \(16\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.51, size = 19, normalized size = 1.00 \begin {gather*} -\frac {1}{2 \, x^{2} e^{\left (x + e^{3}\right )} - \log \relax (2)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.30, size = 15, normalized size = 0.79 \begin {gather*} \frac {1}{\ln \relax (2)-2\,x^2\,{\mathrm {e}}^{{\mathrm {e}}^3}\,{\mathrm {e}}^x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.12, size = 17, normalized size = 0.89 \begin {gather*} - \frac {1}{2 x^{2} e^{x + e^{3}} - \log {\relax (2 )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________