Optimal. Leaf size=32 \[ \left (-x-x^2+x \log (5)\right ) \left (x-\left (-3+\frac {2}{\log \left (e^5+x\right )}\right )^2\right ) \]
________________________________________________________________________________________
Rubi [C] time = 0.79, antiderivative size = 267, normalized size of antiderivative = 8.34, number of steps used = 51, number of rules used = 13, integrand size = 164, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.079, Rules used = {6, 6688, 2418, 2400, 2399, 2389, 2298, 2390, 2309, 2178, 2297, 2302, 30} \begin {gather*} -16 e^5 \text {li}\left (x+e^5\right )-4 \left (1-e^5-\log (5)\right ) \text {li}\left (x+e^5\right )-12 \left (1-2 e^5-\log (5)\right ) \text {li}\left (x+e^5\right )+4 \left (4-3 e^5-4 \log (5)\right ) \text {li}\left (x+e^5\right )-x^3+x^2 (8+\log (5))+\frac {4 \left (x+e^5\right ) x}{\log ^2\left (x+e^5\right )}+\frac {4 \left (x+e^5\right ) \left (1-e^5-\log (5)\right )}{\log ^2\left (x+e^5\right )}-\frac {4 e^5 \left (1-e^5-\log (5)\right )}{\log ^2\left (x+e^5\right )}-\frac {12 \left (x+e^5\right ) x}{\log \left (x+e^5\right )}+9 x (1-\log (5))+\frac {4 e^5 \left (x+e^5\right )}{\log \left (x+e^5\right )}-\frac {4 \left (x+e^5\right ) \left (4-3 e^5-\log (625)\right )}{\log \left (x+e^5\right )}+\frac {4 \left (x+e^5\right ) \left (1-e^5-\log (5)\right )}{\log \left (x+e^5\right )}+\frac {12 e^5 \left (1-e^5-\log (5)\right )}{\log \left (x+e^5\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6
Rule 30
Rule 2178
Rule 2297
Rule 2298
Rule 2302
Rule 2309
Rule 2389
Rule 2390
Rule 2399
Rule 2400
Rule 2418
Rule 6688
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-8 x^2+x (-8+8 \log (5))+\left (16 x+20 x^2+e^5 (4+8 x)+\left (-4 e^5-16 x\right ) \log (5)\right ) \log \left (e^5+x\right )+\left (e^5 (-12-24 x)-12 x-24 x^2+\left (12 e^5+12 x\right ) \log (5)\right ) \log ^2\left (e^5+x\right )+\left (9 x+16 x^2-3 x^3+e^5 \left (9+16 x-3 x^2\right )+\left (-9 x+2 x^2+e^5 (-9+2 x)\right ) \log (5)\right ) \log ^3\left (e^5+x\right )}{\left (e^5+x\right ) \log ^3\left (e^5+x\right )} \, dx\\ &=\int \left (9-3 x^2-9 \log (5)+2 x (8+\log (5))-\frac {8 x (1+x-\log (5))}{\left (e^5+x\right ) \log ^3\left (e^5+x\right )}+\frac {4 \left (5 x^2+2 x \left (2+e^5-2 \log (5)\right )+e^5 (1-\log (5))\right )}{\left (e^5+x\right ) \log ^2\left (e^5+x\right )}-\frac {12 (1+2 x-\log (5))}{\log \left (e^5+x\right )}\right ) \, dx\\ &=-x^3+9 x (1-\log (5))+x^2 (8+\log (5))+4 \int \frac {5 x^2+2 x \left (2+e^5-2 \log (5)\right )+e^5 (1-\log (5))}{\left (e^5+x\right ) \log ^2\left (e^5+x\right )} \, dx-8 \int \frac {x (1+x-\log (5))}{\left (e^5+x\right ) \log ^3\left (e^5+x\right )} \, dx-12 \int \frac {1+2 x-\log (5)}{\log \left (e^5+x\right )} \, dx\\ &=-x^3+9 x (1-\log (5))+x^2 (8+\log (5))+4 \int \left (\frac {5 x}{\log ^2\left (e^5+x\right )}+\frac {4 \left (1-\frac {3 e^5}{4}-\log (5)\right )}{\log ^2\left (e^5+x\right )}+\frac {3 e^5 \left (-1+e^5+\log (5)\right )}{\left (e^5+x\right ) \log ^2\left (e^5+x\right )}\right ) \, dx-8 \int \left (\frac {x}{\log ^3\left (e^5+x\right )}+\frac {1-e^5-\log (5)}{\log ^3\left (e^5+x\right )}+\frac {e^5 \left (-1+e^5+\log (5)\right )}{\left (e^5+x\right ) \log ^3\left (e^5+x\right )}\right ) \, dx-12 \int \left (\frac {2 \left (e^5+x\right )}{\log \left (e^5+x\right )}+\frac {1-2 e^5-\log (5)}{\log \left (e^5+x\right )}\right ) \, dx\\ &=-x^3+9 x (1-\log (5))+x^2 (8+\log (5))-8 \int \frac {x}{\log ^3\left (e^5+x\right )} \, dx+20 \int \frac {x}{\log ^2\left (e^5+x\right )} \, dx-24 \int \frac {e^5+x}{\log \left (e^5+x\right )} \, dx+\left (4 \left (4-3 e^5-4 \log (5)\right )\right ) \int \frac {1}{\log ^2\left (e^5+x\right )} \, dx-\left (12 \left (1-2 e^5-\log (5)\right )\right ) \int \frac {1}{\log \left (e^5+x\right )} \, dx-\left (8 \left (1-e^5-\log (5)\right )\right ) \int \frac {1}{\log ^3\left (e^5+x\right )} \, dx+\left (8 e^5 \left (1-e^5-\log (5)\right )\right ) \int \frac {1}{\left (e^5+x\right ) \log ^3\left (e^5+x\right )} \, dx-\left (12 e^5 \left (1-e^5-\log (5)\right )\right ) \int \frac {1}{\left (e^5+x\right ) \log ^2\left (e^5+x\right )} \, dx\\ &=-x^3+9 x (1-\log (5))+x^2 (8+\log (5))+\frac {4 x \left (e^5+x\right )}{\log ^2\left (e^5+x\right )}-\frac {20 x \left (e^5+x\right )}{\log \left (e^5+x\right )}-8 \int \frac {x}{\log ^2\left (e^5+x\right )} \, dx-24 \operatorname {Subst}\left (\int \frac {x}{\log (x)} \, dx,x,e^5+x\right )+40 \int \frac {x}{\log \left (e^5+x\right )} \, dx-\left (4 e^5\right ) \int \frac {1}{\log ^2\left (e^5+x\right )} \, dx+\left (20 e^5\right ) \int \frac {1}{\log \left (e^5+x\right )} \, dx+\left (4 \left (4-3 e^5-4 \log (5)\right )\right ) \operatorname {Subst}\left (\int \frac {1}{\log ^2(x)} \, dx,x,e^5+x\right )-\left (12 \left (1-2 e^5-\log (5)\right )\right ) \operatorname {Subst}\left (\int \frac {1}{\log (x)} \, dx,x,e^5+x\right )-\left (8 \left (1-e^5-\log (5)\right )\right ) \operatorname {Subst}\left (\int \frac {1}{\log ^3(x)} \, dx,x,e^5+x\right )+\left (8 e^5 \left (1-e^5-\log (5)\right )\right ) \operatorname {Subst}\left (\int \frac {1}{x \log ^3(x)} \, dx,x,e^5+x\right )-\left (12 e^5 \left (1-e^5-\log (5)\right )\right ) \operatorname {Subst}\left (\int \frac {1}{x \log ^2(x)} \, dx,x,e^5+x\right )\\ &=-x^3+9 x (1-\log (5))+x^2 (8+\log (5))+\frac {4 x \left (e^5+x\right )}{\log ^2\left (e^5+x\right )}+\frac {4 \left (e^5+x\right ) \left (1-e^5-\log (5)\right )}{\log ^2\left (e^5+x\right )}-\frac {12 x \left (e^5+x\right )}{\log \left (e^5+x\right )}-\frac {4 \left (e^5+x\right ) \left (4-3 e^5-4 \log (5)\right )}{\log \left (e^5+x\right )}-12 \left (1-2 e^5-\log (5)\right ) \text {li}\left (e^5+x\right )-16 \int \frac {x}{\log \left (e^5+x\right )} \, dx-24 \operatorname {Subst}\left (\int \frac {e^{2 x}}{x} \, dx,x,\log \left (e^5+x\right )\right )+40 \int \left (-\frac {e^5}{\log \left (e^5+x\right )}+\frac {e^5+x}{\log \left (e^5+x\right )}\right ) \, dx-\left (4 e^5\right ) \operatorname {Subst}\left (\int \frac {1}{\log ^2(x)} \, dx,x,e^5+x\right )-\left (8 e^5\right ) \int \frac {1}{\log \left (e^5+x\right )} \, dx+\left (20 e^5\right ) \operatorname {Subst}\left (\int \frac {1}{\log (x)} \, dx,x,e^5+x\right )+\left (4 \left (4-3 e^5-4 \log (5)\right )\right ) \operatorname {Subst}\left (\int \frac {1}{\log (x)} \, dx,x,e^5+x\right )-\left (4 \left (1-e^5-\log (5)\right )\right ) \operatorname {Subst}\left (\int \frac {1}{\log ^2(x)} \, dx,x,e^5+x\right )+\left (8 e^5 \left (1-e^5-\log (5)\right )\right ) \operatorname {Subst}\left (\int \frac {1}{x^3} \, dx,x,\log \left (e^5+x\right )\right )-\left (12 e^5 \left (1-e^5-\log (5)\right )\right ) \operatorname {Subst}\left (\int \frac {1}{x^2} \, dx,x,\log \left (e^5+x\right )\right )\\ &=-x^3-24 \text {Ei}\left (2 \log \left (e^5+x\right )\right )+9 x (1-\log (5))+x^2 (8+\log (5))+\frac {4 x \left (e^5+x\right )}{\log ^2\left (e^5+x\right )}-\frac {4 e^5 \left (1-e^5-\log (5)\right )}{\log ^2\left (e^5+x\right )}+\frac {4 \left (e^5+x\right ) \left (1-e^5-\log (5)\right )}{\log ^2\left (e^5+x\right )}+\frac {4 e^5 \left (e^5+x\right )}{\log \left (e^5+x\right )}-\frac {12 x \left (e^5+x\right )}{\log \left (e^5+x\right )}-\frac {4 \left (e^5+x\right ) \left (4-3 e^5-4 \log (5)\right )}{\log \left (e^5+x\right )}+\frac {12 e^5 \left (1-e^5-\log (5)\right )}{\log \left (e^5+x\right )}+\frac {4 \left (e^5+x\right ) \left (1-e^5-\log (5)\right )}{\log \left (e^5+x\right )}+20 e^5 \text {li}\left (e^5+x\right )+4 \left (4-3 e^5-4 \log (5)\right ) \text {li}\left (e^5+x\right )-12 \left (1-2 e^5-\log (5)\right ) \text {li}\left (e^5+x\right )-16 \int \left (-\frac {e^5}{\log \left (e^5+x\right )}+\frac {e^5+x}{\log \left (e^5+x\right )}\right ) \, dx+40 \int \frac {e^5+x}{\log \left (e^5+x\right )} \, dx-\left (4 e^5\right ) \operatorname {Subst}\left (\int \frac {1}{\log (x)} \, dx,x,e^5+x\right )-\left (8 e^5\right ) \operatorname {Subst}\left (\int \frac {1}{\log (x)} \, dx,x,e^5+x\right )-\left (40 e^5\right ) \int \frac {1}{\log \left (e^5+x\right )} \, dx-\left (4 \left (1-e^5-\log (5)\right )\right ) \operatorname {Subst}\left (\int \frac {1}{\log (x)} \, dx,x,e^5+x\right )\\ &=-x^3-24 \text {Ei}\left (2 \log \left (e^5+x\right )\right )+9 x (1-\log (5))+x^2 (8+\log (5))+\frac {4 x \left (e^5+x\right )}{\log ^2\left (e^5+x\right )}-\frac {4 e^5 \left (1-e^5-\log (5)\right )}{\log ^2\left (e^5+x\right )}+\frac {4 \left (e^5+x\right ) \left (1-e^5-\log (5)\right )}{\log ^2\left (e^5+x\right )}+\frac {4 e^5 \left (e^5+x\right )}{\log \left (e^5+x\right )}-\frac {12 x \left (e^5+x\right )}{\log \left (e^5+x\right )}-\frac {4 \left (e^5+x\right ) \left (4-3 e^5-4 \log (5)\right )}{\log \left (e^5+x\right )}+\frac {12 e^5 \left (1-e^5-\log (5)\right )}{\log \left (e^5+x\right )}+\frac {4 \left (e^5+x\right ) \left (1-e^5-\log (5)\right )}{\log \left (e^5+x\right )}+8 e^5 \text {li}\left (e^5+x\right )+4 \left (4-3 e^5-4 \log (5)\right ) \text {li}\left (e^5+x\right )-12 \left (1-2 e^5-\log (5)\right ) \text {li}\left (e^5+x\right )-4 \left (1-e^5-\log (5)\right ) \text {li}\left (e^5+x\right )-16 \int \frac {e^5+x}{\log \left (e^5+x\right )} \, dx+40 \operatorname {Subst}\left (\int \frac {x}{\log (x)} \, dx,x,e^5+x\right )+\left (16 e^5\right ) \int \frac {1}{\log \left (e^5+x\right )} \, dx-\left (40 e^5\right ) \operatorname {Subst}\left (\int \frac {1}{\log (x)} \, dx,x,e^5+x\right )\\ &=-x^3-24 \text {Ei}\left (2 \log \left (e^5+x\right )\right )+9 x (1-\log (5))+x^2 (8+\log (5))+\frac {4 x \left (e^5+x\right )}{\log ^2\left (e^5+x\right )}-\frac {4 e^5 \left (1-e^5-\log (5)\right )}{\log ^2\left (e^5+x\right )}+\frac {4 \left (e^5+x\right ) \left (1-e^5-\log (5)\right )}{\log ^2\left (e^5+x\right )}+\frac {4 e^5 \left (e^5+x\right )}{\log \left (e^5+x\right )}-\frac {12 x \left (e^5+x\right )}{\log \left (e^5+x\right )}-\frac {4 \left (e^5+x\right ) \left (4-3 e^5-4 \log (5)\right )}{\log \left (e^5+x\right )}+\frac {12 e^5 \left (1-e^5-\log (5)\right )}{\log \left (e^5+x\right )}+\frac {4 \left (e^5+x\right ) \left (1-e^5-\log (5)\right )}{\log \left (e^5+x\right )}-32 e^5 \text {li}\left (e^5+x\right )+4 \left (4-3 e^5-4 \log (5)\right ) \text {li}\left (e^5+x\right )-12 \left (1-2 e^5-\log (5)\right ) \text {li}\left (e^5+x\right )-4 \left (1-e^5-\log (5)\right ) \text {li}\left (e^5+x\right )-16 \operatorname {Subst}\left (\int \frac {x}{\log (x)} \, dx,x,e^5+x\right )+40 \operatorname {Subst}\left (\int \frac {e^{2 x}}{x} \, dx,x,\log \left (e^5+x\right )\right )+\left (16 e^5\right ) \operatorname {Subst}\left (\int \frac {1}{\log (x)} \, dx,x,e^5+x\right )\\ &=-x^3+16 \text {Ei}\left (2 \log \left (e^5+x\right )\right )+9 x (1-\log (5))+x^2 (8+\log (5))+\frac {4 x \left (e^5+x\right )}{\log ^2\left (e^5+x\right )}-\frac {4 e^5 \left (1-e^5-\log (5)\right )}{\log ^2\left (e^5+x\right )}+\frac {4 \left (e^5+x\right ) \left (1-e^5-\log (5)\right )}{\log ^2\left (e^5+x\right )}+\frac {4 e^5 \left (e^5+x\right )}{\log \left (e^5+x\right )}-\frac {12 x \left (e^5+x\right )}{\log \left (e^5+x\right )}-\frac {4 \left (e^5+x\right ) \left (4-3 e^5-4 \log (5)\right )}{\log \left (e^5+x\right )}+\frac {12 e^5 \left (1-e^5-\log (5)\right )}{\log \left (e^5+x\right )}+\frac {4 \left (e^5+x\right ) \left (1-e^5-\log (5)\right )}{\log \left (e^5+x\right )}-16 e^5 \text {li}\left (e^5+x\right )+4 \left (4-3 e^5-4 \log (5)\right ) \text {li}\left (e^5+x\right )-12 \left (1-2 e^5-\log (5)\right ) \text {li}\left (e^5+x\right )-4 \left (1-e^5-\log (5)\right ) \text {li}\left (e^5+x\right )-16 \operatorname {Subst}\left (\int \frac {e^{2 x}}{x} \, dx,x,\log \left (e^5+x\right )\right )\\ &=-x^3+9 x (1-\log (5))+x^2 (8+\log (5))+\frac {4 x \left (e^5+x\right )}{\log ^2\left (e^5+x\right )}-\frac {4 e^5 \left (1-e^5-\log (5)\right )}{\log ^2\left (e^5+x\right )}+\frac {4 \left (e^5+x\right ) \left (1-e^5-\log (5)\right )}{\log ^2\left (e^5+x\right )}+\frac {4 e^5 \left (e^5+x\right )}{\log \left (e^5+x\right )}-\frac {12 x \left (e^5+x\right )}{\log \left (e^5+x\right )}-\frac {4 \left (e^5+x\right ) \left (4-3 e^5-4 \log (5)\right )}{\log \left (e^5+x\right )}+\frac {12 e^5 \left (1-e^5-\log (5)\right )}{\log \left (e^5+x\right )}+\frac {4 \left (e^5+x\right ) \left (1-e^5-\log (5)\right )}{\log \left (e^5+x\right )}-16 e^5 \text {li}\left (e^5+x\right )+4 \left (4-3 e^5-4 \log (5)\right ) \text {li}\left (e^5+x\right )-12 \left (1-2 e^5-\log (5)\right ) \text {li}\left (e^5+x\right )-4 \left (1-e^5-\log (5)\right ) \text {li}\left (e^5+x\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [C] time = 0.32, size = 76, normalized size = 2.38 \begin {gather*} 12 \text {Ei}\left (\log \left (e^5+x\right )\right ) \left (-1+2 e^5+\log (5)\right )-\frac {x (1+x-\log (5)) \left (-4+12 \log \left (e^5+x\right )+(-9+x) \log ^2\left (e^5+x\right )\right )}{\log ^2\left (e^5+x\right )}-12 \left (-1+2 e^5+\log (5)\right ) \text {li}\left (e^5+x\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.98, size = 71, normalized size = 2.22 \begin {gather*} -\frac {{\left (x^{3} - 8 \, x^{2} - {\left (x^{2} - 9 \, x\right )} \log \relax (5) - 9 \, x\right )} \log \left (x + e^{5}\right )^{2} - 4 \, x^{2} + 4 \, x \log \relax (5) + 12 \, {\left (x^{2} - x \log \relax (5) + x\right )} \log \left (x + e^{5}\right ) - 4 \, x}{\log \left (x + e^{5}\right )^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.27, size = 110, normalized size = 3.44 \begin {gather*} -\frac {x^{3} \log \left (x + e^{5}\right )^{2} - x^{2} \log \relax (5) \log \left (x + e^{5}\right )^{2} - 8 \, x^{2} \log \left (x + e^{5}\right )^{2} + 9 \, x \log \relax (5) \log \left (x + e^{5}\right )^{2} + 12 \, x^{2} \log \left (x + e^{5}\right ) - 12 \, x \log \relax (5) \log \left (x + e^{5}\right ) - 9 \, x \log \left (x + e^{5}\right )^{2} - 4 \, x^{2} + 4 \, x \log \relax (5) + 12 \, x \log \left (x + e^{5}\right ) - 4 \, x}{\log \left (x + e^{5}\right )^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.16, size = 67, normalized size = 2.09
method | result | size |
risch | \(x^{2} \ln \relax (5)-x^{3}-9 x \ln \relax (5)+8 x^{2}+9 x +\frac {4 x \left (3 \ln \left ({\mathrm e}^{5}+x \right ) \ln \relax (5)-3 \ln \left ({\mathrm e}^{5}+x \right ) x -\ln \relax (5)+x -3 \ln \left ({\mathrm e}^{5}+x \right )+1\right )}{\ln \left ({\mathrm e}^{5}+x \right )^{2}}\) | \(67\) |
norman | \(\frac {\left (4-4 \ln \relax (5)\right ) x +\left (-12+12 \ln \relax (5)\right ) x \ln \left ({\mathrm e}^{5}+x \right )+\left (8+\ln \relax (5)\right ) x^{2} \ln \left ({\mathrm e}^{5}+x \right )^{2}+\left (-9 \ln \relax (5)+9\right ) x \ln \left ({\mathrm e}^{5}+x \right )^{2}+4 x^{2}-x^{3} \ln \left ({\mathrm e}^{5}+x \right )^{2}-12 \ln \left ({\mathrm e}^{5}+x \right ) x^{2}}{\ln \left ({\mathrm e}^{5}+x \right )^{2}}\) | \(88\) |
derivativedivides | \(9 x -\left ({\mathrm e}^{5}+x \right )^{3}+9 \,{\mathrm e}^{5}+8 \left ({\mathrm e}^{5}+x \right )^{2}-3 \,{\mathrm e}^{10} \left ({\mathrm e}^{5}+x \right )+\frac {4 \,{\mathrm e}^{10}}{\ln \left ({\mathrm e}^{5}+x \right )^{2}}-\frac {12 \,{\mathrm e}^{10}}{\ln \left ({\mathrm e}^{5}+x \right )}+8 \ln \relax (5) \left (-\frac {{\mathrm e}^{5}+x}{2 \ln \left ({\mathrm e}^{5}+x \right )^{2}}-\frac {{\mathrm e}^{5}+x}{2 \ln \left ({\mathrm e}^{5}+x \right )}-\frac {\expIntegralEi \left (1, -\ln \left ({\mathrm e}^{5}+x \right )\right )}{2}\right )+16 \,{\mathrm e}^{5} \left (-\frac {{\mathrm e}^{5}+x}{2 \ln \left ({\mathrm e}^{5}+x \right )^{2}}-\frac {{\mathrm e}^{5}+x}{2 \ln \left ({\mathrm e}^{5}+x \right )}-\frac {\expIntegralEi \left (1, -\ln \left ({\mathrm e}^{5}+x \right )\right )}{2}\right )-24 \,{\mathrm e}^{5} \expIntegralEi \left (1, -\ln \left ({\mathrm e}^{5}+x \right )\right )-12 \ln \relax (5) \expIntegralEi \left (1, -\ln \left ({\mathrm e}^{5}+x \right )\right )-32 \,{\mathrm e}^{5} \left (-\frac {{\mathrm e}^{5}+x}{\ln \left ({\mathrm e}^{5}+x \right )}-\expIntegralEi \left (1, -\ln \left ({\mathrm e}^{5}+x \right )\right )\right )-16 \ln \relax (5) \left (-\frac {{\mathrm e}^{5}+x}{\ln \left ({\mathrm e}^{5}+x \right )}-\expIntegralEi \left (1, -\ln \left ({\mathrm e}^{5}+x \right )\right )\right )+\ln \relax (5) \left ({\mathrm e}^{5}+x \right )^{2}-9 \left ({\mathrm e}^{5}+x \right ) \ln \relax (5)-16 \,{\mathrm e}^{5} \left ({\mathrm e}^{5}+x \right )-\frac {12 \left ({\mathrm e}^{5}+x \right )}{\ln \left ({\mathrm e}^{5}+x \right )}+3 \,{\mathrm e}^{5} \left ({\mathrm e}^{5}+x \right )^{2}-\frac {12 \left ({\mathrm e}^{5}+x \right )^{2}}{\ln \left ({\mathrm e}^{5}+x \right )}+\frac {4 \left ({\mathrm e}^{5}+x \right )^{2}}{\ln \left ({\mathrm e}^{5}+x \right )^{2}}+\frac {12 \,{\mathrm e}^{5}}{\ln \left ({\mathrm e}^{5}+x \right )}-\frac {4 \,{\mathrm e}^{5}}{\ln \left ({\mathrm e}^{5}+x \right )^{2}}-2 \,{\mathrm e}^{5} \ln \relax (5) \left ({\mathrm e}^{5}+x \right )+\frac {4 \,{\mathrm e}^{5} \ln \relax (5)}{\ln \left ({\mathrm e}^{5}+x \right )^{2}}-\frac {12 \,{\mathrm e}^{5} \ln \relax (5)}{\ln \left ({\mathrm e}^{5}+x \right )}+\frac {4 \,{\mathrm e}^{5}+4 x}{\ln \left ({\mathrm e}^{5}+x \right )^{2}}\) | \(378\) |
default | \(9 x -\left ({\mathrm e}^{5}+x \right )^{3}+9 \,{\mathrm e}^{5}+8 \left ({\mathrm e}^{5}+x \right )^{2}-3 \,{\mathrm e}^{10} \left ({\mathrm e}^{5}+x \right )+\frac {4 \,{\mathrm e}^{10}}{\ln \left ({\mathrm e}^{5}+x \right )^{2}}-\frac {12 \,{\mathrm e}^{10}}{\ln \left ({\mathrm e}^{5}+x \right )}+8 \ln \relax (5) \left (-\frac {{\mathrm e}^{5}+x}{2 \ln \left ({\mathrm e}^{5}+x \right )^{2}}-\frac {{\mathrm e}^{5}+x}{2 \ln \left ({\mathrm e}^{5}+x \right )}-\frac {\expIntegralEi \left (1, -\ln \left ({\mathrm e}^{5}+x \right )\right )}{2}\right )+16 \,{\mathrm e}^{5} \left (-\frac {{\mathrm e}^{5}+x}{2 \ln \left ({\mathrm e}^{5}+x \right )^{2}}-\frac {{\mathrm e}^{5}+x}{2 \ln \left ({\mathrm e}^{5}+x \right )}-\frac {\expIntegralEi \left (1, -\ln \left ({\mathrm e}^{5}+x \right )\right )}{2}\right )-24 \,{\mathrm e}^{5} \expIntegralEi \left (1, -\ln \left ({\mathrm e}^{5}+x \right )\right )-12 \ln \relax (5) \expIntegralEi \left (1, -\ln \left ({\mathrm e}^{5}+x \right )\right )-32 \,{\mathrm e}^{5} \left (-\frac {{\mathrm e}^{5}+x}{\ln \left ({\mathrm e}^{5}+x \right )}-\expIntegralEi \left (1, -\ln \left ({\mathrm e}^{5}+x \right )\right )\right )-16 \ln \relax (5) \left (-\frac {{\mathrm e}^{5}+x}{\ln \left ({\mathrm e}^{5}+x \right )}-\expIntegralEi \left (1, -\ln \left ({\mathrm e}^{5}+x \right )\right )\right )+\ln \relax (5) \left ({\mathrm e}^{5}+x \right )^{2}-9 \left ({\mathrm e}^{5}+x \right ) \ln \relax (5)-16 \,{\mathrm e}^{5} \left ({\mathrm e}^{5}+x \right )-\frac {12 \left ({\mathrm e}^{5}+x \right )}{\ln \left ({\mathrm e}^{5}+x \right )}+3 \,{\mathrm e}^{5} \left ({\mathrm e}^{5}+x \right )^{2}-\frac {12 \left ({\mathrm e}^{5}+x \right )^{2}}{\ln \left ({\mathrm e}^{5}+x \right )}+\frac {4 \left ({\mathrm e}^{5}+x \right )^{2}}{\ln \left ({\mathrm e}^{5}+x \right )^{2}}+\frac {12 \,{\mathrm e}^{5}}{\ln \left ({\mathrm e}^{5}+x \right )}-\frac {4 \,{\mathrm e}^{5}}{\ln \left ({\mathrm e}^{5}+x \right )^{2}}-2 \,{\mathrm e}^{5} \ln \relax (5) \left ({\mathrm e}^{5}+x \right )+\frac {4 \,{\mathrm e}^{5} \ln \relax (5)}{\ln \left ({\mathrm e}^{5}+x \right )^{2}}-\frac {12 \,{\mathrm e}^{5} \ln \relax (5)}{\ln \left ({\mathrm e}^{5}+x \right )}+\frac {4 \,{\mathrm e}^{5}+4 x}{\ln \left ({\mathrm e}^{5}+x \right )^{2}}\) | \(378\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.49, size = 68, normalized size = 2.12 \begin {gather*} -\frac {{\left (x^{3} - x^{2} {\left (\log \relax (5) + 8\right )} + 9 \, x {\left (\log \relax (5) - 1\right )}\right )} \log \left (x + e^{5}\right )^{2} - 4 \, x^{2} + 4 \, x {\left (\log \relax (5) - 1\right )} + 12 \, {\left (x^{2} - x {\left (\log \relax (5) - 1\right )}\right )} \log \left (x + e^{5}\right )}{\log \left (x + e^{5}\right )^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.66, size = 93, normalized size = 2.91 \begin {gather*} 9\,x-\frac {12\,x^2}{\ln \left (x+{\mathrm {e}}^5\right )}+\frac {4\,x^2}{{\ln \left (x+{\mathrm {e}}^5\right )}^2}-9\,x\,\ln \relax (5)+x^2\,\ln \relax (5)+8\,x^2-x^3-\frac {12\,x}{\ln \left (x+{\mathrm {e}}^5\right )}+\frac {4\,x}{{\ln \left (x+{\mathrm {e}}^5\right )}^2}+\frac {12\,x\,\ln \relax (5)}{\ln \left (x+{\mathrm {e}}^5\right )}-\frac {4\,x\,\ln \relax (5)}{{\ln \left (x+{\mathrm {e}}^5\right )}^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.19, size = 65, normalized size = 2.03 \begin {gather*} - x^{3} + x^{2} \left (\log {\relax (5 )} + 8\right ) + x \left (9 - 9 \log {\relax (5 )}\right ) + \frac {4 x^{2} - 4 x \log {\relax (5 )} + 4 x + \left (- 12 x^{2} - 12 x + 12 x \log {\relax (5 )}\right ) \log {\left (x + e^{5} \right )}}{\log {\left (x + e^{5} \right )}^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________