Optimal. Leaf size=21 \[ 16+\frac {e^{-2 x}}{5}-x+x^2+\log ^2(2) \]
________________________________________________________________________________________
Rubi [A] time = 0.04, antiderivative size = 16, normalized size of antiderivative = 0.76, number of steps used = 4, number of rules used = 3, integrand size = 22, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.136, Rules used = {12, 6688, 2194} \begin {gather*} x^2-x+\frac {e^{-2 x}}{5} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2194
Rule 6688
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{5} \int e^{-2 x} \left (-2+e^{2 x} (-5+10 x)\right ) \, dx\\ &=\frac {1}{5} \int \left (-5-2 e^{-2 x}+10 x\right ) \, dx\\ &=-x+x^2-\frac {2}{5} \int e^{-2 x} \, dx\\ &=\frac {e^{-2 x}}{5}-x+x^2\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.01, size = 16, normalized size = 0.76 \begin {gather*} \frac {e^{-2 x}}{5}-x+x^2 \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.45, size = 21, normalized size = 1.00 \begin {gather*} \frac {1}{5} \, {\left (5 \, {\left (x^{2} - x\right )} e^{\left (2 \, x\right )} + 1\right )} e^{\left (-2 \, x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.18, size = 13, normalized size = 0.62 \begin {gather*} x^{2} - x + \frac {1}{5} \, e^{\left (-2 \, x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.02, size = 14, normalized size = 0.67
method | result | size |
risch | \(-x +x^{2}+\frac {{\mathrm e}^{-2 x}}{5}\) | \(14\) |
derivativedivides | \(-x +x^{2}+\frac {{\mathrm e}^{-2 x}}{5}\) | \(16\) |
default | \(-x +x^{2}+\frac {{\mathrm e}^{-2 x}}{5}\) | \(16\) |
norman | \(\left (\frac {1}{5}+{\mathrm e}^{2 x} x^{2}-x \,{\mathrm e}^{2 x}\right ) {\mathrm e}^{-2 x}\) | \(25\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.37, size = 13, normalized size = 0.62 \begin {gather*} x^{2} - x + \frac {1}{5} \, e^{\left (-2 \, x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.46, size = 13, normalized size = 0.62 \begin {gather*} \frac {{\mathrm {e}}^{-2\,x}}{5}-x+x^2 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.09, size = 12, normalized size = 0.57 \begin {gather*} x^{2} - x + \frac {e^{- 2 x}}{5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________