Optimal. Leaf size=13 \[ \frac {3+x}{8+e^x x} \]
________________________________________________________________________________________
Rubi [F] time = 0.69, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {8 x+e^x x \left (-3-3 x-x^2\right )}{64 x+16 e^x x^2+e^{2 x} x^3} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {8-e^x \left (3+3 x+x^2\right )}{\left (8+e^x x\right )^2} \, dx\\ &=\int \left (-\frac {3+3 x+x^2}{x \left (8+e^x x\right )}+\frac {8 \left (3+4 x+x^2\right )}{x \left (8+e^x x\right )^2}\right ) \, dx\\ &=8 \int \frac {3+4 x+x^2}{x \left (8+e^x x\right )^2} \, dx-\int \frac {3+3 x+x^2}{x \left (8+e^x x\right )} \, dx\\ &=8 \int \left (\frac {4}{\left (8+e^x x\right )^2}+\frac {3}{x \left (8+e^x x\right )^2}+\frac {x}{\left (8+e^x x\right )^2}\right ) \, dx-\int \left (\frac {3}{8+e^x x}+\frac {3}{x \left (8+e^x x\right )}+\frac {x}{8+e^x x}\right ) \, dx\\ &=-\left (3 \int \frac {1}{8+e^x x} \, dx\right )-3 \int \frac {1}{x \left (8+e^x x\right )} \, dx+8 \int \frac {x}{\left (8+e^x x\right )^2} \, dx+24 \int \frac {1}{x \left (8+e^x x\right )^2} \, dx+32 \int \frac {1}{\left (8+e^x x\right )^2} \, dx-\int \frac {x}{8+e^x x} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.15, size = 13, normalized size = 1.00 \begin {gather*} \frac {3+x}{8+e^x x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.58, size = 13, normalized size = 1.00 \begin {gather*} \frac {x + 3}{e^{\left (x + \log \relax (x)\right )} + 8} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.14, size = 12, normalized size = 0.92 \begin {gather*} \frac {x + 3}{x e^{x} + 8} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 13, normalized size = 1.00
method | result | size |
risch | \(\frac {3+x}{8+{\mathrm e}^{x} x}\) | \(13\) |
norman | \(\frac {3+x}{8+{\mathrm e}^{x +\ln \relax (x )}}\) | \(14\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.39, size = 12, normalized size = 0.92 \begin {gather*} \frac {x + 3}{x e^{x} + 8} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.46, size = 12, normalized size = 0.92 \begin {gather*} \frac {x+3}{x\,{\mathrm {e}}^x+8} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.11, size = 8, normalized size = 0.62 \begin {gather*} \frac {x + 3}{x e^{x} + 8} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________