Optimal. Leaf size=25 \[ \frac {5 \log (x)}{x \left (-e+e^{x^2 \left (e^5+x\right )}+x\right )} \]
________________________________________________________________________________________
Rubi [F] time = 3.43, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-5 e+5 e^{e^5 x^2+x^3}+5 x+\left (5 e-10 x+e^{e^5 x^2+x^3} \left (-5-10 e^5 x^2-15 x^3\right )\right ) \log (x)}{e^2 x^2+e^{2 e^5 x^2+2 x^3} x^2-2 e x^3+x^4+e^{e^5 x^2+x^3} \left (-2 e x^2+2 x^3\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {5 \left (-e+e^{x^2 \left (e^5+x\right )}+x-\left (-e+2 x+2 e^{5+e^5 x^2+x^3} x^2+e^{x^2 \left (e^5+x\right )} \left (1+3 x^3\right )\right ) \log (x)\right )}{\left (e-e^{x^2 \left (e^5+x\right )}-x\right )^2 x^2} \, dx\\ &=5 \int \frac {-e+e^{x^2 \left (e^5+x\right )}+x-\left (-e+2 x+2 e^{5+e^5 x^2+x^3} x^2+e^{x^2 \left (e^5+x\right )} \left (1+3 x^3\right )\right ) \log (x)}{\left (e-e^{x^2 \left (e^5+x\right )}-x\right )^2 x^2} \, dx\\ &=5 \int \left (\frac {\left (-1-2 e^{5+e^5 x^2+x^3} x-3 e x^2+3 x^3\right ) \log (x)}{x \left (-e+e^{x^2 \left (e^5+x\right )}+x\right )^2}-\frac {-1+\log (x)+3 x^3 \log (x)}{x^2 \left (-e+e^{x^2 \left (e^5+x\right )}+x\right )}\right ) \, dx\\ &=5 \int \frac {\left (-1-2 e^{5+e^5 x^2+x^3} x-3 e x^2+3 x^3\right ) \log (x)}{x \left (-e+e^{x^2 \left (e^5+x\right )}+x\right )^2} \, dx-5 \int \frac {-1+\log (x)+3 x^3 \log (x)}{x^2 \left (-e+e^{x^2 \left (e^5+x\right )}+x\right )} \, dx\\ &=-\left (5 \int \left (-\frac {1}{x^2 \left (-e+e^{x^2 \left (e^5+x\right )}+x\right )}+\frac {\log (x)}{x^2 \left (-e+e^{x^2 \left (e^5+x\right )}+x\right )}+\frac {3 x \log (x)}{-e+e^{x^2 \left (e^5+x\right )}+x}\right ) \, dx\right )-5 \int \frac {-2 \int \frac {e^{5+e^5 x^2+x^3}}{\left (-e+e^{x^2 \left (e^5+x\right )}+x\right )^2} \, dx-\int \frac {1}{x \left (-e+e^{x^2 \left (e^5+x\right )}+x\right )^2} \, dx-3 e \int \frac {x}{\left (-e+e^{x^2 \left (e^5+x\right )}+x\right )^2} \, dx+3 \int \frac {x^2}{\left (-e+e^{x^2 \left (e^5+x\right )}+x\right )^2} \, dx}{x} \, dx-(5 \log (x)) \int \frac {1}{x \left (-e+e^{x^2 \left (e^5+x\right )}+x\right )^2} \, dx-(10 \log (x)) \int \frac {e^{5+e^5 x^2+x^3}}{\left (e-e^{x^2 \left (e^5+x\right )}-x\right )^2} \, dx+(15 \log (x)) \int \frac {x^2}{\left (-e+e^{x^2 \left (e^5+x\right )}+x\right )^2} \, dx-(15 e \log (x)) \int \frac {x}{\left (e-e^{x^2 \left (e^5+x\right )}-x\right )^2} \, dx\\ &=5 \int \frac {1}{x^2 \left (-e+e^{x^2 \left (e^5+x\right )}+x\right )} \, dx-5 \int \frac {\log (x)}{x^2 \left (-e+e^{x^2 \left (e^5+x\right )}+x\right )} \, dx-5 \int \left (\frac {-2 \int \frac {e^{5+e^5 x^2+x^3}}{\left (-e+e^{x^2 \left (e^5+x\right )}+x\right )^2} \, dx-\int \frac {1}{x \left (-e+e^{x^2 \left (e^5+x\right )}+x\right )^2} \, dx-3 e \int \frac {x}{\left (-e+e^{x^2 \left (e^5+x\right )}+x\right )^2} \, dx}{x}+\frac {3 \int \frac {x^2}{\left (-e+e^{x^2 \left (e^5+x\right )}+x\right )^2} \, dx}{x}\right ) \, dx-15 \int \frac {x \log (x)}{-e+e^{x^2 \left (e^5+x\right )}+x} \, dx-(5 \log (x)) \int \frac {1}{x \left (-e+e^{x^2 \left (e^5+x\right )}+x\right )^2} \, dx-(10 \log (x)) \int \frac {e^{5+e^5 x^2+x^3}}{\left (e-e^{x^2 \left (e^5+x\right )}-x\right )^2} \, dx+(15 \log (x)) \int \frac {x^2}{\left (-e+e^{x^2 \left (e^5+x\right )}+x\right )^2} \, dx-(15 e \log (x)) \int \frac {x}{\left (e-e^{x^2 \left (e^5+x\right )}-x\right )^2} \, dx\\ &=5 \int \frac {1}{x^2 \left (-e+e^{x^2 \left (e^5+x\right )}+x\right )} \, dx-5 \int \frac {-2 \int \frac {e^{5+e^5 x^2+x^3}}{\left (-e+e^{x^2 \left (e^5+x\right )}+x\right )^2} \, dx-\int \frac {1}{x \left (-e+e^{x^2 \left (e^5+x\right )}+x\right )^2} \, dx-3 e \int \frac {x}{\left (-e+e^{x^2 \left (e^5+x\right )}+x\right )^2} \, dx}{x} \, dx+5 \int \frac {\int \frac {1}{x^2 \left (-e+e^{x^2 \left (e^5+x\right )}+x\right )} \, dx}{x} \, dx-15 \int \frac {\int \frac {x^2}{\left (-e+e^{x^2 \left (e^5+x\right )}+x\right )^2} \, dx}{x} \, dx+15 \int \frac {\int \frac {x}{-e+e^{x^2 \left (e^5+x\right )}+x} \, dx}{x} \, dx-(5 \log (x)) \int \frac {1}{x \left (-e+e^{x^2 \left (e^5+x\right )}+x\right )^2} \, dx-(5 \log (x)) \int \frac {1}{x^2 \left (-e+e^{x^2 \left (e^5+x\right )}+x\right )} \, dx-(10 \log (x)) \int \frac {e^{5+e^5 x^2+x^3}}{\left (e-e^{x^2 \left (e^5+x\right )}-x\right )^2} \, dx+(15 \log (x)) \int \frac {x^2}{\left (-e+e^{x^2 \left (e^5+x\right )}+x\right )^2} \, dx-(15 \log (x)) \int \frac {x}{-e+e^{x^2 \left (e^5+x\right )}+x} \, dx-(15 e \log (x)) \int \frac {x}{\left (e-e^{x^2 \left (e^5+x\right )}-x\right )^2} \, dx\\ &=5 \int \frac {1}{x^2 \left (-e+e^{x^2 \left (e^5+x\right )}+x\right )} \, dx-5 \int \left (\frac {-2 \int \frac {e^{5+e^5 x^2+x^3}}{\left (-e+e^{x^2 \left (e^5+x\right )}+x\right )^2} \, dx-\int \frac {1}{x \left (-e+e^{x^2 \left (e^5+x\right )}+x\right )^2} \, dx}{x}-\frac {3 e \int \frac {x}{\left (-e+e^{x^2 \left (e^5+x\right )}+x\right )^2} \, dx}{x}\right ) \, dx+5 \int \frac {\int \frac {1}{x^2 \left (-e+e^{x^2 \left (e^5+x\right )}+x\right )} \, dx}{x} \, dx-15 \int \frac {\int \frac {x^2}{\left (-e+e^{x^2 \left (e^5+x\right )}+x\right )^2} \, dx}{x} \, dx+15 \int \frac {\int \frac {x}{-e+e^{x^2 \left (e^5+x\right )}+x} \, dx}{x} \, dx-(5 \log (x)) \int \frac {1}{x \left (-e+e^{x^2 \left (e^5+x\right )}+x\right )^2} \, dx-(5 \log (x)) \int \frac {1}{x^2 \left (-e+e^{x^2 \left (e^5+x\right )}+x\right )} \, dx-(10 \log (x)) \int \frac {e^{5+e^5 x^2+x^3}}{\left (e-e^{x^2 \left (e^5+x\right )}-x\right )^2} \, dx+(15 \log (x)) \int \frac {x^2}{\left (-e+e^{x^2 \left (e^5+x\right )}+x\right )^2} \, dx-(15 \log (x)) \int \frac {x}{-e+e^{x^2 \left (e^5+x\right )}+x} \, dx-(15 e \log (x)) \int \frac {x}{\left (e-e^{x^2 \left (e^5+x\right )}-x\right )^2} \, dx\\ &=5 \int \frac {1}{x^2 \left (-e+e^{x^2 \left (e^5+x\right )}+x\right )} \, dx-5 \int \frac {-2 \int \frac {e^{5+e^5 x^2+x^3}}{\left (-e+e^{x^2 \left (e^5+x\right )}+x\right )^2} \, dx-\int \frac {1}{x \left (-e+e^{x^2 \left (e^5+x\right )}+x\right )^2} \, dx}{x} \, dx+5 \int \frac {\int \frac {1}{x^2 \left (-e+e^{x^2 \left (e^5+x\right )}+x\right )} \, dx}{x} \, dx-15 \int \frac {\int \frac {x^2}{\left (-e+e^{x^2 \left (e^5+x\right )}+x\right )^2} \, dx}{x} \, dx+15 \int \frac {\int \frac {x}{-e+e^{x^2 \left (e^5+x\right )}+x} \, dx}{x} \, dx+(15 e) \int \frac {\int \frac {x}{\left (-e+e^{x^2 \left (e^5+x\right )}+x\right )^2} \, dx}{x} \, dx-(5 \log (x)) \int \frac {1}{x \left (-e+e^{x^2 \left (e^5+x\right )}+x\right )^2} \, dx-(5 \log (x)) \int \frac {1}{x^2 \left (-e+e^{x^2 \left (e^5+x\right )}+x\right )} \, dx-(10 \log (x)) \int \frac {e^{5+e^5 x^2+x^3}}{\left (e-e^{x^2 \left (e^5+x\right )}-x\right )^2} \, dx+(15 \log (x)) \int \frac {x^2}{\left (-e+e^{x^2 \left (e^5+x\right )}+x\right )^2} \, dx-(15 \log (x)) \int \frac {x}{-e+e^{x^2 \left (e^5+x\right )}+x} \, dx-(15 e \log (x)) \int \frac {x}{\left (e-e^{x^2 \left (e^5+x\right )}-x\right )^2} \, dx\\ &=5 \int \frac {1}{x^2 \left (-e+e^{x^2 \left (e^5+x\right )}+x\right )} \, dx-5 \int \left (-\frac {2 \int \frac {e^{5+e^5 x^2+x^3}}{\left (-e+e^{x^2 \left (e^5+x\right )}+x\right )^2} \, dx}{x}-\frac {\int \frac {1}{x \left (-e+e^{x^2 \left (e^5+x\right )}+x\right )^2} \, dx}{x}\right ) \, dx+5 \int \frac {\int \frac {1}{x^2 \left (-e+e^{x^2 \left (e^5+x\right )}+x\right )} \, dx}{x} \, dx-15 \int \frac {\int \frac {x^2}{\left (-e+e^{x^2 \left (e^5+x\right )}+x\right )^2} \, dx}{x} \, dx+15 \int \frac {\int \frac {x}{-e+e^{x^2 \left (e^5+x\right )}+x} \, dx}{x} \, dx+(15 e) \int \frac {\int \frac {x}{\left (-e+e^{x^2 \left (e^5+x\right )}+x\right )^2} \, dx}{x} \, dx-(5 \log (x)) \int \frac {1}{x \left (-e+e^{x^2 \left (e^5+x\right )}+x\right )^2} \, dx-(5 \log (x)) \int \frac {1}{x^2 \left (-e+e^{x^2 \left (e^5+x\right )}+x\right )} \, dx-(10 \log (x)) \int \frac {e^{5+e^5 x^2+x^3}}{\left (e-e^{x^2 \left (e^5+x\right )}-x\right )^2} \, dx+(15 \log (x)) \int \frac {x^2}{\left (-e+e^{x^2 \left (e^5+x\right )}+x\right )^2} \, dx-(15 \log (x)) \int \frac {x}{-e+e^{x^2 \left (e^5+x\right )}+x} \, dx-(15 e \log (x)) \int \frac {x}{\left (e-e^{x^2 \left (e^5+x\right )}-x\right )^2} \, dx\\ &=5 \int \frac {1}{x^2 \left (-e+e^{x^2 \left (e^5+x\right )}+x\right )} \, dx+5 \int \frac {\int \frac {1}{x \left (-e+e^{x^2 \left (e^5+x\right )}+x\right )^2} \, dx}{x} \, dx+5 \int \frac {\int \frac {1}{x^2 \left (-e+e^{x^2 \left (e^5+x\right )}+x\right )} \, dx}{x} \, dx+10 \int \frac {\int \frac {e^{5+e^5 x^2+x^3}}{\left (-e+e^{x^2 \left (e^5+x\right )}+x\right )^2} \, dx}{x} \, dx-15 \int \frac {\int \frac {x^2}{\left (-e+e^{x^2 \left (e^5+x\right )}+x\right )^2} \, dx}{x} \, dx+15 \int \frac {\int \frac {x}{-e+e^{x^2 \left (e^5+x\right )}+x} \, dx}{x} \, dx+(15 e) \int \frac {\int \frac {x}{\left (-e+e^{x^2 \left (e^5+x\right )}+x\right )^2} \, dx}{x} \, dx-(5 \log (x)) \int \frac {1}{x \left (-e+e^{x^2 \left (e^5+x\right )}+x\right )^2} \, dx-(5 \log (x)) \int \frac {1}{x^2 \left (-e+e^{x^2 \left (e^5+x\right )}+x\right )} \, dx-(10 \log (x)) \int \frac {e^{5+e^5 x^2+x^3}}{\left (e-e^{x^2 \left (e^5+x\right )}-x\right )^2} \, dx+(15 \log (x)) \int \frac {x^2}{\left (-e+e^{x^2 \left (e^5+x\right )}+x\right )^2} \, dx-(15 \log (x)) \int \frac {x}{-e+e^{x^2 \left (e^5+x\right )}+x} \, dx-(15 e \log (x)) \int \frac {x}{\left (e-e^{x^2 \left (e^5+x\right )}-x\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.12, size = 27, normalized size = 1.08 \begin {gather*} \frac {5 \log (x)}{x \left (-e+e^{e^5 x^2+x^3}+x\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.72, size = 28, normalized size = 1.12 \begin {gather*} \frac {5 \, \log \relax (x)}{x^{2} - x e + x e^{\left (x^{3} + x^{2} e^{5}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.30, size = 172, normalized size = 6.88 \begin {gather*} \frac {5 \, {\left (3 \, x^{3} \log \relax (x) + 2 \, x^{2} e^{5} \log \relax (x) - 3 \, x^{2} e \log \relax (x) - 2 \, x e^{6} \log \relax (x) - \log \relax (x)\right )}}{3 \, x^{5} + 2 \, x^{4} e^{5} - 6 \, x^{4} e + 3 \, x^{4} e^{\left (x^{3} + x^{2} e^{5}\right )} - 4 \, x^{3} e^{6} + 3 \, x^{3} e^{2} + 2 \, x^{3} e^{\left (x^{3} + x^{2} e^{5} + 5\right )} - 3 \, x^{3} e^{\left (x^{3} + x^{2} e^{5} + 1\right )} + 2 \, x^{2} e^{7} - 2 \, x^{2} e^{\left (x^{3} + x^{2} e^{5} + 6\right )} - x^{2} + x e - x e^{\left (x^{3} + x^{2} e^{5}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.05, size = 27, normalized size = 1.08
method | result | size |
risch | \(-\frac {5 \ln \relax (x )}{x \left ({\mathrm e}-x -{\mathrm e}^{x^{2} \left ({\mathrm e}^{5}+x \right )}\right )}\) | \(27\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.42, size = 28, normalized size = 1.12 \begin {gather*} \frac {5 \, \log \relax (x)}{x^{2} - x e + x e^{\left (x^{3} + x^{2} e^{5}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.71, size = 90, normalized size = 3.60 \begin {gather*} \frac {5\,x\,\ln \relax (x)-15\,x^4\,\ln \relax (x)+x^3\,\left (15\,\mathrm {e}\,\ln \relax (x)-10\,{\mathrm {e}}^5\,\ln \relax (x)\right )+10\,x^2\,{\mathrm {e}}^6\,\ln \relax (x)}{x^2\,\left (x+{\mathrm {e}}^{x^3+{\mathrm {e}}^5\,x^2}-\mathrm {e}\right )\,\left (2\,x\,{\mathrm {e}}^6+3\,x^2\,\mathrm {e}-2\,x^2\,{\mathrm {e}}^5-3\,x^3+1\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.31, size = 26, normalized size = 1.04 \begin {gather*} \frac {5 \log {\relax (x )}}{x^{2} + x e^{x^{3} + x^{2} e^{5}} - e x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________