Optimal. Leaf size=30 \[ -2+e^{\frac {\left (3+\left (-x+3 \left (x+x^2\right )\right )^2\right )^2}{x (3+x)}} \]
________________________________________________________________________________________
Rubi [F] time = 14.23, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\exp \left (\frac {9+24 x^2+72 x^3+70 x^4+96 x^5+216 x^6+216 x^7+81 x^8}{3 x+x^2}\right ) \left (-27-18 x+72 x^2+432 x^3+702 x^4+1292 x^5+3528 x^6+4752 x^7+2781 x^8+486 x^9\right )}{9 x^2+6 x^3+x^4} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {\exp \left (\frac {9+24 x^2+72 x^3+70 x^4+96 x^5+216 x^6+216 x^7+81 x^8}{3 x+x^2}\right ) \left (-27-18 x+72 x^2+432 x^3+702 x^4+1292 x^5+3528 x^6+4752 x^7+2781 x^8+486 x^9\right )}{x^2 \left (9+6 x+x^2\right )} \, dx\\ &=\int \frac {\exp \left (\frac {9+24 x^2+72 x^3+70 x^4+96 x^5+216 x^6+216 x^7+81 x^8}{3 x+x^2}\right ) \left (-27-18 x+72 x^2+432 x^3+702 x^4+1292 x^5+3528 x^6+4752 x^7+2781 x^8+486 x^9\right )}{x^2 (3+x)^2} \, dx\\ &=\int \frac {e^{\frac {\left (3+4 x^2+12 x^3+9 x^4\right )^2}{x (3+x)}} \left (-27-18 x+72 x^2+432 x^3+702 x^4+1292 x^5+3528 x^6+4752 x^7+2781 x^8+486 x^9\right )}{x^2 (3+x)^2} \, dx\\ &=\int \left (-7293 e^{\frac {\left (3+4 x^2+12 x^3+9 x^4\right )^2}{x (3+x)}}-\frac {3 e^{\frac {\left (3+4 x^2+12 x^3+9 x^4\right )^2}{x (3+x)}}}{x^2}+4910 e^{\frac {\left (3+4 x^2+12 x^3+9 x^4\right )^2}{x (3+x)}} x-2385 e^{\frac {\left (3+4 x^2+12 x^3+9 x^4\right )^2}{x (3+x)}} x^2+1188 e^{\frac {\left (3+4 x^2+12 x^3+9 x^4\right )^2}{x (3+x)}} x^3-135 e^{\frac {\left (3+4 x^2+12 x^3+9 x^4\right )^2}{x (3+x)}} x^4+486 e^{\frac {\left (3+4 x^2+12 x^3+9 x^4\right )^2}{x (3+x)}} x^5+\frac {65712 e^{\frac {\left (3+4 x^2+12 x^3+9 x^4\right )^2}{x (3+x)}}}{(3+x)^2}\right ) \, dx\\ &=-\left (3 \int \frac {e^{\frac {\left (3+4 x^2+12 x^3+9 x^4\right )^2}{x (3+x)}}}{x^2} \, dx\right )-135 \int e^{\frac {\left (3+4 x^2+12 x^3+9 x^4\right )^2}{x (3+x)}} x^4 \, dx+486 \int e^{\frac {\left (3+4 x^2+12 x^3+9 x^4\right )^2}{x (3+x)}} x^5 \, dx+1188 \int e^{\frac {\left (3+4 x^2+12 x^3+9 x^4\right )^2}{x (3+x)}} x^3 \, dx-2385 \int e^{\frac {\left (3+4 x^2+12 x^3+9 x^4\right )^2}{x (3+x)}} x^2 \, dx+4910 \int e^{\frac {\left (3+4 x^2+12 x^3+9 x^4\right )^2}{x (3+x)}} x \, dx-7293 \int e^{\frac {\left (3+4 x^2+12 x^3+9 x^4\right )^2}{x (3+x)}} \, dx+65712 \int \frac {e^{\frac {\left (3+4 x^2+12 x^3+9 x^4\right )^2}{x (3+x)}}}{(3+x)^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.10, size = 30, normalized size = 1.00 \begin {gather*} e^{\frac {\left (3+4 x^2+12 x^3+9 x^4\right )^2}{x (3+x)}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.68, size = 48, normalized size = 1.60 \begin {gather*} e^{\left (\frac {81 \, x^{8} + 216 \, x^{7} + 216 \, x^{6} + 96 \, x^{5} + 70 \, x^{4} + 72 \, x^{3} + 24 \, x^{2} + 9}{x^{2} + 3 \, x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.15, size = 111, normalized size = 3.70 \begin {gather*} e^{\left (\frac {81 \, x^{8}}{x^{2} + 3 \, x} + \frac {216 \, x^{7}}{x^{2} + 3 \, x} + \frac {216 \, x^{6}}{x^{2} + 3 \, x} + \frac {96 \, x^{5}}{x^{2} + 3 \, x} + \frac {70 \, x^{4}}{x^{2} + 3 \, x} + \frac {72 \, x^{3}}{x^{2} + 3 \, x} + \frac {24 \, x^{2}}{x^{2} + 3 \, x} + \frac {9}{x^{2} + 3 \, x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.18, size = 30, normalized size = 1.00
method | result | size |
risch | \({\mathrm e}^{\frac {\left (9 x^{4}+12 x^{3}+4 x^{2}+3\right )^{2}}{\left (3+x \right ) x}}\) | \(30\) |
gosper | \({\mathrm e}^{\frac {81 x^{8}+216 x^{7}+216 x^{6}+96 x^{5}+70 x^{4}+72 x^{3}+24 x^{2}+9}{\left (3+x \right ) x}}\) | \(48\) |
norman | \(\frac {x^{2} {\mathrm e}^{\frac {81 x^{8}+216 x^{7}+216 x^{6}+96 x^{5}+70 x^{4}+72 x^{3}+24 x^{2}+9}{x^{2}+3 x}}+3 x \,{\mathrm e}^{\frac {81 x^{8}+216 x^{7}+216 x^{6}+96 x^{5}+70 x^{4}+72 x^{3}+24 x^{2}+9}{x^{2}+3 x}}}{\left (3+x \right ) x}\) | \(114\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.96, size = 43, normalized size = 1.43 \begin {gather*} e^{\left (81 \, x^{6} - 27 \, x^{5} + 297 \, x^{4} - 795 \, x^{3} + 2455 \, x^{2} - 7293 \, x - \frac {65712}{x + 3} + \frac {3}{x} + 21903\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.60, size = 88, normalized size = 2.93 \begin {gather*} {\mathrm {e}}^{\frac {9}{x^2+3\,x}}\,{\mathrm {e}}^{\frac {24\,x}{x+3}}\,{\mathrm {e}}^{\frac {70\,x^3}{x+3}}\,{\mathrm {e}}^{\frac {72\,x^2}{x+3}}\,{\mathrm {e}}^{\frac {81\,x^7}{x+3}}\,{\mathrm {e}}^{\frac {96\,x^4}{x+3}}\,{\mathrm {e}}^{\frac {216\,x^5}{x+3}}\,{\mathrm {e}}^{\frac {216\,x^6}{x+3}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.28, size = 44, normalized size = 1.47 \begin {gather*} e^{\frac {81 x^{8} + 216 x^{7} + 216 x^{6} + 96 x^{5} + 70 x^{4} + 72 x^{3} + 24 x^{2} + 9}{x^{2} + 3 x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________