Optimal. Leaf size=35 \[ 3-3 (x-\log (3))-x \left (\frac {x+\frac {2}{4+x}}{x}-\log ^2(2 x)\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.08, antiderivative size = 19, normalized size of antiderivative = 0.54, number of steps used = 8, number of rules used = 5, integrand size = 51, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.098, Rules used = {27, 6688, 683, 2295, 2296} \begin {gather*} -4 x-\frac {2}{x+4}+x \log ^2(2 x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 27
Rule 683
Rule 2295
Rule 2296
Rule 6688
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-62-32 x-4 x^2+\left (32+16 x+2 x^2\right ) \log (2 x)+\left (16+8 x+x^2\right ) \log ^2(2 x)}{(4+x)^2} \, dx\\ &=\int \left (-\frac {2 \left (31+16 x+2 x^2\right )}{(4+x)^2}+2 \log (2 x)+\log ^2(2 x)\right ) \, dx\\ &=-\left (2 \int \frac {31+16 x+2 x^2}{(4+x)^2} \, dx\right )+2 \int \log (2 x) \, dx+\int \log ^2(2 x) \, dx\\ &=-2 x+2 x \log (2 x)+x \log ^2(2 x)-2 \int \left (2-\frac {1}{(4+x)^2}\right ) \, dx-2 \int \log (2 x) \, dx\\ &=-4 x-\frac {2}{4+x}+x \log ^2(2 x)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.02, size = 21, normalized size = 0.60 \begin {gather*} -\frac {2}{4+x}-4 (4+x)+x \log ^2(2 x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.02, size = 30, normalized size = 0.86 \begin {gather*} \frac {{\left (x^{2} + 4 \, x\right )} \log \left (2 \, x\right )^{2} - 4 \, x^{2} - 16 \, x - 2}{x + 4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.20, size = 19, normalized size = 0.54 \begin {gather*} x \log \left (2 \, x\right )^{2} - 4 \, x - \frac {2}{x + 4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.11, size = 22, normalized size = 0.63
method | result | size |
derivativedivides | \(x \ln \left (2 x \right )^{2}-4 x -\frac {4}{2 x +8}\) | \(22\) |
default | \(x \ln \left (2 x \right )^{2}-4 x -\frac {4}{2 x +8}\) | \(22\) |
risch | \(x \ln \left (2 x \right )^{2}-\frac {2 \left (2 x^{2}+8 x +1\right )}{4+x}\) | \(27\) |
norman | \(\frac {x^{2} \ln \left (2 x \right )^{2}-4 x^{2}+4 x \ln \left (2 x \right )^{2}+62}{4+x}\) | \(33\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.48, size = 82, normalized size = 2.34 \begin {gather*} -4 \, x + \frac {x^{2} \log \relax (2)^{2} + 4 \, x \log \relax (2)^{2} + {\left (x^{2} + 4 \, x\right )} \log \relax (x)^{2} + 2 \, {\left (x^{2} \log \relax (2) + 4 \, x {\left (\log \relax (2) - 1\right )}\right )} \log \relax (x) + 32 \, \log \relax (2)}{x + 4} - \frac {32 \, \log \left (2 \, x\right )}{x + 4} - \frac {2}{x + 4} + 8 \, \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.48, size = 18, normalized size = 0.51 \begin {gather*} x\,\left ({\ln \left (2\,x\right )}^2-4\right )-\frac {2}{x+4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.15, size = 15, normalized size = 0.43 \begin {gather*} x \log {\left (2 x \right )}^{2} - 4 x - \frac {2}{x + 4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________