Optimal. Leaf size=21 \[ \frac {x}{4}+\left (\log (3)+\frac {1}{x \log (3+x)}\right )^2 \]
________________________________________________________________________________________
Rubi [F] time = 0.74, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-8 x+\left (-24-8 x-8 x^2 \log (3)\right ) \log (3+x)+\left (-24 x-8 x^2\right ) \log (3) \log ^2(3+x)+\left (3 x^3+x^4\right ) \log ^3(3+x)}{\left (12 x^3+4 x^4\right ) \log ^3(3+x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-8 x+\left (-24-8 x-8 x^2 \log (3)\right ) \log (3+x)+\left (-24 x-8 x^2\right ) \log (3) \log ^2(3+x)+\left (3 x^3+x^4\right ) \log ^3(3+x)}{x^3 (12+4 x) \log ^3(3+x)} \, dx\\ &=\int \left (\frac {1}{4}-\frac {2}{x^2 (3+x) \log ^3(3+x)}-\frac {2 \left (3+x+x^2 \log (3)\right )}{x^3 (3+x) \log ^2(3+x)}-\frac {\log (9)}{x^2 \log (3+x)}\right ) \, dx\\ &=\frac {x}{4}-2 \int \frac {1}{x^2 (3+x) \log ^3(3+x)} \, dx-2 \int \frac {3+x+x^2 \log (3)}{x^3 (3+x) \log ^2(3+x)} \, dx-\log (9) \int \frac {1}{x^2 \log (3+x)} \, dx\\ &=\frac {x}{4}-2 \int \left (\frac {1}{3 x^2 \log ^3(3+x)}-\frac {1}{9 x \log ^3(3+x)}+\frac {1}{9 (3+x) \log ^3(3+x)}\right ) \, dx-2 \int \left (\frac {1}{x^3 \log ^2(3+x)}+\frac {\log (3)}{3 x \log ^2(3+x)}-\frac {\log (3)}{3 (3+x) \log ^2(3+x)}\right ) \, dx-\log (9) \int \frac {1}{x^2 \log (3+x)} \, dx\\ &=\frac {x}{4}+\frac {2}{9} \int \frac {1}{x \log ^3(3+x)} \, dx-\frac {2}{9} \int \frac {1}{(3+x) \log ^3(3+x)} \, dx-\frac {2}{3} \int \frac {1}{x^2 \log ^3(3+x)} \, dx-2 \int \frac {1}{x^3 \log ^2(3+x)} \, dx-\frac {1}{3} (2 \log (3)) \int \frac {1}{x \log ^2(3+x)} \, dx+\frac {1}{3} (2 \log (3)) \int \frac {1}{(3+x) \log ^2(3+x)} \, dx-\log (9) \int \frac {1}{x^2 \log (3+x)} \, dx\\ &=\frac {x}{4}+\frac {2}{9} \int \frac {1}{x \log ^3(3+x)} \, dx-\frac {2}{9} \operatorname {Subst}\left (\int \frac {1}{x \log ^3(x)} \, dx,x,3+x\right )-\frac {2}{3} \int \frac {1}{x^2 \log ^3(3+x)} \, dx-2 \int \frac {1}{x^3 \log ^2(3+x)} \, dx-\frac {1}{3} (2 \log (3)) \int \frac {1}{x \log ^2(3+x)} \, dx+\frac {1}{3} (2 \log (3)) \operatorname {Subst}\left (\int \frac {1}{x \log ^2(x)} \, dx,x,3+x\right )-\log (9) \int \frac {1}{x^2 \log (3+x)} \, dx\\ &=\frac {x}{4}+\frac {2}{9} \int \frac {1}{x \log ^3(3+x)} \, dx-\frac {2}{9} \operatorname {Subst}\left (\int \frac {1}{x^3} \, dx,x,\log (3+x)\right )-\frac {2}{3} \int \frac {1}{x^2 \log ^3(3+x)} \, dx-2 \int \frac {1}{x^3 \log ^2(3+x)} \, dx-\frac {1}{3} (2 \log (3)) \int \frac {1}{x \log ^2(3+x)} \, dx+\frac {1}{3} (2 \log (3)) \operatorname {Subst}\left (\int \frac {1}{x^2} \, dx,x,\log (3+x)\right )-\log (9) \int \frac {1}{x^2 \log (3+x)} \, dx\\ &=\frac {x}{4}+\frac {1}{9 \log ^2(3+x)}-\frac {2 \log (3)}{3 \log (3+x)}+\frac {2}{9} \int \frac {1}{x \log ^3(3+x)} \, dx-\frac {2}{3} \int \frac {1}{x^2 \log ^3(3+x)} \, dx-2 \int \frac {1}{x^3 \log ^2(3+x)} \, dx-\frac {1}{3} (2 \log (3)) \int \frac {1}{x \log ^2(3+x)} \, dx-\log (9) \int \frac {1}{x^2 \log (3+x)} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.89, size = 29, normalized size = 1.38 \begin {gather*} \frac {x}{4}+\frac {1}{x^2 \log ^2(3+x)}+\frac {2 \log (3)}{x \log (3+x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.66, size = 32, normalized size = 1.52 \begin {gather*} \frac {x^{3} \log \left (x + 3\right )^{2} + 8 \, x \log \relax (3) \log \left (x + 3\right ) + 4}{4 \, x^{2} \log \left (x + 3\right )^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.19, size = 25, normalized size = 1.19 \begin {gather*} \frac {1}{4} \, x + \frac {2 \, x \log \relax (3) \log \left (x + 3\right ) + 1}{x^{2} \log \left (x + 3\right )^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.14, size = 26, normalized size = 1.24
method | result | size |
risch | \(\frac {x}{4}+\frac {2 x \ln \relax (3) \ln \left (3+x \right )+1}{x^{2} \ln \left (3+x \right )^{2}}\) | \(26\) |
norman | \(\frac {1+\frac {x^{3} \ln \left (3+x \right )^{2}}{4}+2 x \ln \relax (3) \ln \left (3+x \right )}{\ln \left (3+x \right )^{2} x^{2}}\) | \(33\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.50, size = 32, normalized size = 1.52 \begin {gather*} \frac {x^{3} \log \left (x + 3\right )^{2} + 8 \, x \log \relax (3) \log \left (x + 3\right ) + 4}{4 \, x^{2} \log \left (x + 3\right )^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.37, size = 25, normalized size = 1.19 \begin {gather*} \frac {x}{4}+\frac {2\,x\,\ln \left (x+3\right )\,\ln \relax (3)+1}{x^2\,{\ln \left (x+3\right )}^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.13, size = 26, normalized size = 1.24 \begin {gather*} \frac {x}{4} + \frac {2 x \log {\relax (3 )} \log {\left (x + 3 \right )} + 1}{x^{2} \log {\left (x + 3 \right )}^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________